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Chapter G03 — Multivariate Methods

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

GO3AAF 14 Performs principal component analysis

GO3ACF 14 Performs canonical variate analysis

GO3ADF 14 Performs canonical correlation analysis

GO3BAF 15 Computes orthogonal rotations for loading matrix, generalized orthomax
criterion

GO3BCF 15 Computes Procrustes rotations

GO3CAF 15 Computes the maximum likelihood estimates of the parameters of
a factor analysis model, factor loadings, communalities and residual
correlations

GO3CCF 15 Computes factor score coefficients (for use after GO3CAF)

GO3DAF 15 Computes test statistic for equality of within-group covariance matrices
and matrices for discriminant analysis

GO3DBF 15 Computes Mahalanobis squared distances for group or pooled variance-
covariance matrices (for use after GO3DAF)

GO3DCF 15 Allocates observations to groups according to selected rules (for use after
GO3DAF)

GO3EAF 16 Computes distance matrix

GO3ECF 16 Hierarchical cluster analysis

GO3EFF 16 K-means cluster analysis

GO3EHF 16 Constructs dendrogram (for use after GO3ECF)

GO3EJF 16 Computes cluster indicator variable (for use after GO3ECF)

GO3FAF 17 Performs principal co-ordinate analysis, classical metric scaling

GO3FCF 17 Performs non-metric (ordinal) multidimensional scaling

GO3ZAF 15 Produces standardized values (z-scores) for a data matrix
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1 Scope of the Chapter

This chapter is concerned with methods for studying multivariate data. A multivariate data set consists
of several variables recorded on a number of objects or individuals. Multivariate methods can be classified
as those that seek to examine the relationships between the variables (e.g. principal components), known
as variable-directed methods, and those that seek to examine the relationships between the objects (e.g.
cluster analysis), known as individual-directed methods.

Multiple regression is not included in this chapter as it involves the relationship of a single variable, known
as the response variable, to the other variables in the data set, the explanatory variables. Routines for
multiple regression are provided in Chapter G02.

2 Background to the Problems
2.1 Variable-directed Methods

Let the n by p data matrix consist of p variables, z,,z,,. c T, observed on n objects or individuals.
Variable-directed methods seek to examine the linear relationships between the p variables with the aim
of reducing the dimensionality of the problem. There are different methods depending on the structure
of the problem. Principal component analysis and factor analysis examine the relationships between all
the variables. If the individuals are classified into groups then canonical variate analysis examines the
between group structure. If the variables can be considered as coming from two sets then canonical
correlation analysis examines the relationships between the two sets of variables. All four methods are
based on an eigenvalue decomposition or a singular value decomposition (SVD) of an appropriate matrix.

The above methods may reduce the dimensionality of the data from the original p variables to a smaller
number, k, of derived variables that adequately represent the data. In general these k£ derived variables
will be unique only up to an orthogonal rotation. Therefore it may be useful to see if there exists suitable
rotations of these variables that lead to a simple interpretation of the new variables in terms of the
original variables.

2.1.1 Principal component analysis

Principal component analysis finds new variables which are linear combinations of the p observed variables
so that they have maximum variation and are orthogonal (uncorrelated).

Let S be the p by p variance-covariance matrix of the n by p data matrix. A vector a, of length p is
found such that:
af Sa, is maximised subject to aa, = 1.

» .
The variable z; = Z a,;z; is known as the first principal component and gives the linear combination of

=1

' P
the variables that gives the maximum variation. A second principal component, z, = Z a,;x;, is found

i=1
such that:
af Sa, is maximised subject to ala, = 1 and aZa, = 0.

This gives the linear combination of variables, orthogonal to the first principal component, that gives the
maximum variation. Further principal components are derived in a similar way.

The vectors a,, fori = 1,2,.. ., p are the eigenvectors of the matrix S and associated with each eigenvector
is the eigenvalue, 'y?. The value of 7,-2 / Z'yf gives the proportion of variation explained by the ith

principal component. Alternatively the a; can be considered as the right singular vectors in a SVD of a
scaled mean centred data matrix. The singular values of the SVD are the +;-values.

Often fewer than p dimensions (principal components) are needed to represent most of the variation in
the data. A test on the smaller eigenvalues can be used to investigate the number of dimensions needed.

The values of the principal component variables for the individuals are known as the principal component
scores. These can be standardized so that the variance of these scores for each principal component is 1.0
or equal to the corresponding eigenvalue. The principal component scores correspond to the left-hand
singular vectors in the SVD.
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2.1.2 Factor analysis

Let the p variables have variance-covariance matrix . The aim of factor analysis is to account for the
covariances in these p variables in terms of a smaller number, k, of hypothetical variables, or factors,
fisfay- -+, f. These are assumed to be independent and to have unit variance. The relationship between
the observed variables and the factors is given by the model

k
;=Y N;fi+e i=12...,p
i=1

where ), for i = 1,2,...,p, j = 1,2,...,k, are the factor loadings and e, fori = 1,2,...,p, are
independent random variables with variances ;. These represent the unique component of the variation
of each observed variable. The proportion of variation for each variable accounted for by the factors is
known as the communality.

The model for the variance-covariance matrix, X, can then be written as:
T=AAT+ ¥,

where A is the matrix of the factor loadings, /\,-j, and ¥ is a diagonal matrix of the unique variances ;.

If it is assumed that both the k factors and the e; follow independent Normal distributions then the
parameters of the model, A and ¥, can be estimated by maximum likelihood as described by Lawley
and Maxwell [7]). The computation of the maximum likelihood estimates is an iterative procedure which
involves computing the eigenvalues and eigenvectors of the matrix

S* = W—l/?sq,—l/2’

where S is the sample variance-covariance matrix. Alternatively the SVD of the matrix RU~Y/2 can be

used, where RTR = S. When convergence has been achieved the estimates A, of A, are obtained by
scaling the eigenvectors of S*. The use of maximum likelihood estimation means that likelihood ratio
tests can be constructed to test for the number of factors required.

Having found the estimates of the parameters of the model, the estimates of the values of the factors
for the individuals, the factorscores, can be computed. These involve the calculation of the factor score
coefficients. Two common methods of computing factor score coefficients are the regression method and
Bartlett’s method. Bartlett’s method gives unbiased estimates of the factor scores while estimates from
the regression method are biased but have smaller variance than those from Bartlett’s method; see Lawley
and Maxwell [7].

2.1.3 Canonical variate analysis

If the individuals can be classified into one of g groups then canonical variate analysis finds the line4r
combinations of the p variables that maximize the ratio of the between group variation to the within-
group variation. These variables are known as canonical variates. As the canonical variates provide
discrimination between the groups the method is also known as canonical discrimination.

The canonical variates can be calculated from the eigenvectors of the within group sums of squares and
cross-products matrix or from the SVD of the matrix

v=QIq,,

where Q) is an orthogonal matrix that defines the groups and @, is the first p columns of the orthogonal
matrix () from the @R decompostion of the data matrix with the variable means subtracted. If the data
matrix is not of full rank the @, matrix can be obtained from a SVD. If the SVD of V is

vV =U,AUT,

then the non-zero elements (§; > 0) of the diagonal matrix A are the canonical correlations. The largest
8; is called the first canonical correlation and associated with it is the first canonical variate.

The eigenvalues, 47, of the within-group sums of squares matrix are given by:

i

2 _
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and the value of m; = 72/ 27,2 gives the proportion of variation explained by the ith canonical variate.
The values of the ; give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem. The number of dimensions can be investigated
by means of a test on the smaller canonical correlations.

The canonical variate loadings and the relationship between the original variables and the canonical
variates are calculated from the matrix U,. This matrix is scaled so that the canonical variates have unit
variance.

2.1.4 Canonical correlation analysis

If the p variables can be considered as coming from two sets then canonical correlation analysis finds
linear combinations of the variables in each set, known as canonical variates, such that the correlations
between corresponding canonical variates for the two sets are maximized. Let the two sets of variables
be denoted by z and y with p, and p, variables in each set respectively. Let the variance-covariance of

the data set be

Ser S
S = [ T Ty ]
S!I-"-' Syy

and let
— o1 -1
=5,y Sys5zz Szy
then the canonical correlations can be calculated from the eigenvalues of the matrix X. Alternatively the

canonical correlations can be calculated by means of a SVD of the matrix
V=0Q:Q,

where Q, is the first p, columns of the orthogonal matrix @ from the QR decompostion of the z-
variables in the data matrix and @, is the first p, columns of the Q matrix of the QR decomposition
of the y-variables in the data matrix. In both cases the variable means are subtracted before the QR
decomposition is computed. If either sets of variables is not of full rank an SVD can be used instead of
the QR decomposition. If the SVD of V is

V =U,AU],

then the non-zero elements (§; > 0) of the diagonal matrix A are the canonical correlations. The largest
6; is called the first canonical correlation and associated with it is the first canonical variate. The
eigenvalues, 7?7, of the matrix ¥ are given by

The value of 7; = 7,-2 / Z 7,-2 gives the proportion of variation explained by the ith canonical variate. The

values of the 7, give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem; this can also be investigated by means of a test on the
smaller values of the v7.

The relationship between the canonical variables and the original variables, the canonical variate loadings,
can be computed from the U, and U, matrices.

2.1.5 Rotations

There are two principal reasons for using rotations. Either

(2) simplifying the structure to aid interpretation of derived variables, or
(b) comparing two or more data sets or sets of derived variables.

The most common type of rotations used for (a) are orthogonal rotations. If A is the p by k loading matrix

from a variable-directed multivariate method, then the rotations are selected such that the elements, )\;J-,
of the rotated loading matrix, A*, are either relatively large or small. The rotations may be found by

minimizing the criterion
k p k 4 2
. Y *
V= E ;(’\ij )4 - ; <§ :(’\ij)2)
= j

j=1i=1 j=1 \i=1
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where the constant, 7, gives a family of rotations, with ¥ = 1 giving varimax rotations and v = 0 giving
quartimax rotations.

For (b) Procrustes rotations are used. Let A and B be two I by m matrices, which can be considered as
representing | points in m dimensions. One example is if 4 is the loading matrix from a variable-directed
multivariate method and B is a hypothesised pattern matrix. In order to try to match the points in A
and B there are three steps:

(i) translate so that centroids of both matrices are at the origin,
(ii) find a rotation that minimizes the sum of squared distances between corresponding points of the
matrices,
(iii) scale the matrices.

For a more detailed description, see Krzanowski [6].

2.2 Individual-directed Methods

While dealing with the same n by p data matrix as variable-directed methods the emphasis is the n objects
or individuals rather than the p variables. The methods are generally based on an n by n distance or
dissimilarity matrix such that the (k, j)th element gives a measure of how ‘far apart’ individual k and j
are. Alternatively, a similarity matrix can be used which measures how ‘close’ individuals are. The form
of the measure of distance or similarity will depend upon the form of the p variables. For continuous
variables it is usually assumed that some form of Euclidean distance is suitable. That is, for z;; and
zj; measured for individuals k and j on variable i respectively, the contribution to distance between
individuals k and j from variable i is given by

(zpi — zji)z'

Often there will be a need to scale the variables to produce satisfactory distances. For discrete variables
there are various measures of similarity or distance that can easily be computed. For example, for binary
data a measure of similarity could be

1 - if the individuals take the same value,

0 - otherwise.
Given a measure of distance between individuals there are three basic tasks that can be performed.

(1) Group the individuals; that is, collect the individuals into groups so that those within a group are
closer to each other than they are to members of another group.

(2) Classify individuals; that is, if some individuals are known to come from certain groups allocate
individuals whose group membership is unknown to the nearest group.

(3) Map the individuals; that is, produce a multidimensional diagram in which the distances on the
diagram represent the distances between the individuals.

In the above, (1) leads to cluster analysis, (2) leads to discriminant analysis and (3) leads to scaling
methods.

2.2.1 Hierarchical cluster analysis

Approaches for cluster analysis can be classified into two types: hierarchical and non-hierarchical.
Hierarchical cluster analysis produces a series of overlapping groups or clusters ranging from separate
individuals to one single cluster. For example five individuals could be hierarchically clustered as follows.

Step1 (1) (2) (3) () (5

Step2  (1,2)  (34) (5

Step 3 (1,2) (3,4,5)

Step 4 (1,2,3,4,5)
The clusters at a level are constructed from the clusters at a previous level. There are two basic approaches
to hierarchical cluster analysis: agglomerative methods which build up clusters starting from individuals

until there is only one cluster, or divisive methods which start with a single cluster and split clusters
until the individual level is reached. This chapter contains the more common agglomerative methods.
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The stages in a hierarchical cluster analysis are usually as follows.

(a) Form a distance matrix
(b) Use selected criterion to form hierarchy.
(c) Print cluster information in the form of a dendrogram or use information to form a set of clusters.

These three stages will be considered in turn.

(a) Form distance matrix.

(b)

For the n by p data matrix X, a general measure of the distance between object j and object k,

d‘k’ 1s:
P a
dj = (Z D(xji/sirxki/si)) ,
i=1

j
where z;; and z; are the (j,i)th and (k,i)th elements of X, s; is a standardization for the ith
variable and D(u, v) is a suitable function. Three common distances for continuous variables are:

(i) Euclidean distance: D(u,v) = (u — v)? and a = 1.

(ii) Euclidean squared distance: D(u,v) = (u— v)? and @ = 1.
(iii) Absolute distance (city block metric): D(u, v)=|u—v|and o =1.

The common standardisations are the standard deviation and the range. For dichotomous variables
there are a number of different measures (see Krzanowski [6] and Everitt [2]); these are usually easy
to compute. If the individuals in a cluster analysis are themselves variables, then a suitable distance

measure will be based on the correlation coefficient for continuous variables and contingency table
statistics for discrete data.

Form Hierarchy

Given a distance matrix for the n individuals, an agglomerative clustering methods produces a
hierarchical tree by starting with n clusters each with a single individual and then at each of n — 1
stages merging two clusters to form a larger cluster until all individuals are in a single cluster. At
each stage the two clusters that are nearest are merged to form a new cluster and a new distance
matrix is computed for the reduced number of clusters.

Methods differ as to how the distances between the new cluster and other clusters are computed.
For three clusters i, j and k let n;, n; and n; be the number of objects in each cluster and let d;;,
d;; and d;, be the distances between the clusters. If clusters j and k be merged to give cluster jk,

then the distance from cluster i to cluster jk, d; ;;, can be computed in the following ways.
(a) Single Link or nearest neighbour : d; ;;, = min(d;;, d;;).
(b) Complete Link or furthest neighbour : d; ;;, = max(d;;, dy;).

ny Nk
nj+nk dij + nj+ni d"k'

(d) Centroid : d; ;;, = - di; + ey Sk dy

nij+ne 4] n;+nk ik~ (n;+nk)?
(e) Median : d; ;, = %d‘.j +1id, - %djk'
(f) Minimum variance : d; ;; = [(n; + n;)d;; + (n; + ng )i, — nid;g)/(n; + 1y + ny)

(c) Group average : d; ;; =

For further details, see Everitt [2] or Krzanowski [6].

Produce Dendrogram and Clusters

Hierarchical cluster analysis can be represented by a tree that shows at which distance the clusters
merge. Such a tree is known as a dendrogram; see Everitt [2] and Krzanowski [6].

G03.6 [NP3086/18]



G03 - Multivariate Methods Introduction — G03

A simple example is

O 8P -~n -

N

1 2 3 4 5

Individuals

Figure 1

The end-points of the dendrogram represent the individuals that have been clustered.

Alternatively the information from the tree can be used to produced either a chosen number of clusters
or the clusters that exist at a given distance. The latter is equivalent to taking the dendrogram and
drawing a line across at a given distance to produce clusters.

2.2.2 Non-hierarchical clustering

Non-heirarchical cluster analysis usually forms a given number of clusters from the data. There is no
requirement that if first k — 1 and then k clusters were requested then the k —1 clusters would be formed
from the k clusters.

Most non-hierarchical methods of cluster analysis seek to partition the set of individuals into a number
of clusters so as to optimise a criterion. The number of clusters is usually specified prior to the analysis.
One commonly used criterion is the within-cluster sum of squares. Given n individuals with p variables
measured on each individual, z;; for i = 1,2,...,n, j = 1,2,...p, the within-cluster sum of squares for K

clusters is: X ,
SS. = Z Z Z(zij -;)%

k=1i€Sx j=1
where S, is the set of objects in the kth cluster and Z;; is the mean for the variable j over cluster k.
Starting with an initial allocation of individuals to clusters the method then seeks to minimise SS, by a
series of re-allocations. This is often known as K-means clustering.

2.2.3 Discriminant analysis

Discriminant analysis is concerned with the allocation of objects to n; groups on the basis of observations
on those objects using an allocation rule. This rule is computed from observations coming from a training
set in which group membership is known. The allocation rule is based on the distance between the object
and an estimate of the location of the groups. If p variables are observed and the vector of means for the
jth group in the training set are Z; then the usual measure of the distance of an observation, z;, from
the jth group mean is given by Mahalanobis distance:

2 - \T o— _
Di; = (z — -"’j) S, 1(% - -'”j),
where S, is either the within-group variance-covariance matrix, S;, for the n. objects in the jth group,
or a pooled variance-covariance matrix, S, computed from all n objects from all groups where

2?21(7‘,' - I)Sj

(n—mny)

S=
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If the within group variance-covariance matrices can be assumed to be equal then the pooled variance-
covariance matrix can be used. This assumption can be tested using the test statistic:

Ng
G=C (n—ng)logISI—Z(nj—1)10g|5j| 3
j=1
where
2p7+3p—1 (51 !

€=l 800, D \(H -1 (-ny)

For large n, G is approximately distributed as a x? variable with %p(p + 1)(n, — 1) degrees of freedom;
see Morrison [8].

In addition to the distances a set of prior probabilities of group membership, =;, for j = 1,2,...,n,, may
be used. The prior probabilities reflect the user’s view as to the likelihood of the objects coming from
the different groups.

It is generally assumed that the p variables follow a multivariate Normal distribution with, for the jth
group, mean p; and variance-covariance matrix ;. If p(zlp;, E;) is the probability of observing the
observation z, from group j, then the posterior probability of belonging to group j is

p(j|ze, K Ej) x P(-"’k|ﬂj, Ej)""j-

An observation is allocated to the group with the highest posterior probability.

In the estimative approach to discrimination the parameters ; and X; in p(ilzy, pj, E;) are replaced by
their estimates calculated from the training set. If it is assumed that the within-group variance-covariance
matrices are equal then the linear discriminant function is obtained; otherwise if it is assumed that the
variance-covariance matrices are unequal then the quadratic discriminant function is obtained.

In the Bayesian predictive approach a non-informative prior distribution is used for the parameters giving
the posterior distribution for the parameters from the training set, X, of, p(p;, Z;|X;). A predictive
distribution is then obtained by integrating p(j|z, p;, Z;)p(k;, £;|1X) over the parameter space. This
predictive distribution, p(z;|X,), then replaces p(z,|y;, X;) to give

p(jlxk9l“j)2j) o p(zklxt)ﬂ.j'

In addition to allocating the objects to groups an atypicality index for each object and for each group
can be computed. This represents the probability of obtaining an observation more typical of the group
than that observed. A high value of the atypicality index for all groups indicates that the observation
may in fact come from a group not represented in the training set.

Alternative approaches to discrimination are the use of canonical variates and logistic discrimination.
Canonical variate analysis is described above and as it seeks to find the directions that best discriminate
between groups these directions can also be used to allocate further observations. This can be viewed as
an extension of Fisher’s linear discriminant function. This approach does not assume that the data is
Normally distributed, but Fisher’s linear discriminant function may not perform well on non-Normal data.
In the case of two groups, logistic regression can be performed with the response variable indicating the
group allocation and the variables in the discriminant analysis being the explanatory variables. Allocation
can then be made on the basis of the fitted response value. This is known as logistic discrimination and
can be shown to be valid for a wide range of distributional assumptions.

2.2.4 Scaling methods

Scaling methods seek to represent the observed dissimilarities or distances between objects as distances
between points in Euclidean space. For example if the distances between objects A, B and C were
3, 4 and 5 the distances could be represented exactly by three points in two-dimensional space. Only
their relative positions would be important, the whole configuration of points could be rotated or shifted
without effecting the distances between the points. If a one-dimensional representation was required the
‘best’ representation might give distances of 2%, 3% and 5%, which may be an adequate representation. If
the distances were 3, 4 and 8 then these distances could not be exactly represented in Euclidean space
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even in two dimensions; the best representation being the three points in a straight line giving distances
3,4and 7.

In practice the user of scaling methods has to decide upon the number of dimensions in which the data
is to be represented. The smaller the number the easier it will be to assimilate the information. The
chosen number of dimensions needs to give an adequate representation of the data but will often not give
an exact representation because either the number of chosen dimensions is too small or the data cannot
be represented in Euclidean space.

Two basic methods are available depending on the nature of the dissimilarities or distances being analysed.
If the distances can be assumed to satisfy the metric inequality

d;; < dy + dy;,

then the distances can be represented exactly by points in Euclidean space and the technique known as
metric scaling, classical scaling or principal coordinate analysis can be used. This technique involves
the computing of the eigenvalues of a matrix derived from the distance matrix. The eigenvectors
corresponding to the k largest positive eigenvalues gives the best k dimensions in which to represent the
objects. If there are negative eigenvalues then the distance matrix cannot be represented in Euclidean
space.

Instead of the above approach of requiring the distances from the points to match the distances from
the objects as closely as possible sometimes only a rank-order equivalence is required. That is, the ith
largest distance between objects should, as far as possible, be represented by the ith largest distance
between points. This would be appropriate when the dissimilarities are based on subjective rankings.
For example if the objects were foods the a number of judges rank the foods for different qualities such
as taste and texture the resulting distances would not necessarily obey the metric inequality but the
rank order would be significant. Alternatively, by relaxing the requirement from matching distances to
rank order equivalence only, the number of dimensions required to represent the distance matrix may be
decreased. The requirement of rank-order equivalence leads to non-metric or ordinal multidimensional
scaling. The criterion used to measure the closeness of the fitted distance matrix to the observed distance
matrix is known as STRESS which is given by

Yie Tjma(d = diy)?

n i-1 5
iz j=1 d;;

where d;?j is the Euclidean squared distance between the computed points ¢ and j and d;j is the fitted

distance obtained when d;j is monotonically regressed on the observed distances d,;, that is, d:j is

monotonic relative to d;; and is obtained from d,; with the smallest number of changes. Thus STRESS

is a measure of by how much the set of points preserve the order of the distances in the original distance
matrix and non-metric multidimensional scaling seeks to find the set of points that minimize the STRESS.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.
The following routines perform the computations for variable-directed methods.

GO03AAF computes the principal components from an input data matrix. Results include tests on the
eigenvalues, the principal component loadings, and the principal component scores.

GO03ACF computes a canonical variate analysis from an input data matrix. Results include canonical
correlations, tests on eigenvalues, canonical variate means, and canonical variate loadings.

GO03ADF computes a canonical correlation analysis from a input data matrix. Results include tests on
the eigenvalues and canonical variates loadings.

GO03CAF computes maximum likelihood estimates of the parameters of the factor analysis model.
GO03CCF computes the factor score coefficients from the results of GO3CAF.
GO03BAF computes orthogonal rotations, including varimax and equimax rotations.

GO03BCF computes Procrustes rotations.
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The following routines perform the computations for individual-directed methods.
Discriminant Analysis

GO3DAF computes matrices for use in discriminant analysis and test statistics for use in testing the
equality of within group variance-covariance matrices.

GO3DBF  computes Mahalanobis distances from the results of GO3DAF.

GO3DCF allocates observations to groups using allocation rules as described above. An atypicality
index can also be computed. GO3DCF uses the results of GO3DAF.

Note also that GO2GBF will fit a logistic regression model and can be used for logistic discrimination.
Cluster Analysis

GO3EAF computes a distance matrix.

GO3ECF  computes heirarchical cluster analysis from a given distance matrix.
GO3EHF computes a dendrogram from the results of GO3ECF.

GO3EJF  computes a set of clusters from the results of GO3ECF.

GO3EFF  computes non-heirarchical (K-means) cluster analysis.

Scaling Methods

GO3FAF  computes a principal co-ordinate analysis.

GO3FCF  computes non-metric multi-dimensional scaling.
The following service routine is also available:

GO3ZAF  computes a matrix of standardized variables from an input data matrix.

4 References
[1] Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall
[2] Everitt B S (1974) Cluster Analysis Heinemann
[3] Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley

[4] Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl.
20 (3) 2-25

[5] Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) Griffin (3rd
Edition)

[6] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

[7] Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method Butterworths (2nd
Edition)

[8] Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill
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GO03AAF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3AAF performs a principal component analysis on a data matrix; both the principal component
loadings and the principal component scores are returned.

2 Specification

SUBROUTINE GO3AAF(MATRIX, STD, WEIGHT, N, M, X, LDX, ISX, S, WT,

1 NVAR, E, LDE, P, LDP, V, LDV, WK, IFAIL)
INTEGER N, M, LDX, ISX(M), NVAR, LDE, LDP, LDV, IFAIL
real X(LDX,M), S(M), WT(x), E(LDE,6), P(LDP,NVAR),
1 V(LDV,NVAR), WK(NVAR*NVAR+45x%(NVAR-1))
CHARACTER#1 MATRIX, STD, WEIGHT

3 Description

Let X be an n by p data matrix of n observations on p variables z,,z,,...,z, and let the p by p
variance-covariance matrix of z,,z,,..., z, be S. A vector a, of length p is found such that:

aT Sa, is maximized subject to ala, = 1.

P
The variable z;, = Z a,;z; is known as the first principal component and gives the linear combination of

i=1
14

the variables that gives the maximum variation. A second principal component, z, = Z a,;;, is found

i=1

such that:
T . . . . T _ T _
a; Sa, is maximized subject to ay a, =1 and aza; = 0.
This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors a;,a,,...,a,, are the eigenvectors of the matrix S and associated with each eigenvector

is the eigenvalue, A?. The value of A2/ Zx\? gives the proportion of variation explained by the ith
principal component. Alternatively the a;’s can be considered as the right singular vectors in a singular
value decomposition with singular values A; of the data matrix centred about its mean and scaled by

1/y/(n — 1), X,. This latter approach is used in GO3AAF, with

X, =VAP'
where A is a diagonal matrix with elements A;, P’ is the p by p marix with columns a; and V is an n by
p matrix with V'V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected then a test of the equality
of the remaining p — k eigenvalues is

(n—(2p+5)/6){— > log(/\?)+(p—k)10g( > A?/(p—k))}

i=k+1 i=k+1
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which has, asymptotically, a x? distribution with %(p —k —1)(p — k + 2) degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be considered
then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardised sums of squares and cross-products matrix may be used. In the last case S is

1 1
replaced by 6~ 2S50™ 2 for a diagonal matrix ¢ with positive elements. If the correlation matrix is used
the y? approximation for the statistic given above is not valid.

The principal component scores, F', are the values of the principal component variables for the
observations. These can be standardised so that the variance of these scores for each principal component
is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount ,/w;, where w;, is the weight for the ith observation.

4 References
[1] Chatfield C and Collins A J (1980) Introduction to multivariate analysis. Chapman and Hall
[2] Cooley W C and Lohnes P R (1971) Multivariate data analysis. Wiley

[3] Hammarling S (1985) The Singular Value Decomposition in Multivariate Statistics Signum Newsl..
20 (3) 2-25

[4] Kendall M G and Stuart A (1979) The advanced theory of statistics (3 volumes). Griffin (4th
Edition)

[5] Morrison D F (1967) Multivariate statistical methods. McGraw-Hill

5 Parameters

1: MATRIX — CHARACTER*1 Input

On entry: indicates for which type of matrix the principal component analysis is to be carried out.
If MATRIX = ’C’, then it is for the correlation matrix.
If MATRIX = ’S’, then it is for a standardised matrix, with standardisations given by S.
If MATRIX = "U’, then it is for the sums of squares and cross-products matrix.
If MATRIX = ’V’, then it is for the variance-covariance matrix.
Constraint: MATRIX =C’,’S’, U’ or ’V".
2: STD — CHARACTER*1 Input

On entry: indicates if the principal component scores are to be standardised.

If STD = °’S’, then the principal component scores are standardised so that F'F = I, ie.
F=XPA'=V.

bl

If STD = ’U’, then the principal component scores are unstandardised, i.e., F = X,P = VA.
If STD = ’Z’, then the principal component scores are standardised so that they have unit variance.

If STD = ’E’, then the principal component scores are standardised so that they have variance equal
to the corresponding eigenvalue.

Constraint: STD =E’,’S’, ’U’ or ’Z’.
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10:

WEIGHT — CHARACTER*1 Input

On entry: indicates if weights are to be used.
If WEIGHT = 'U’ (Unweighted), then no weights are used.

If WEIGHT = "W’ (Weighted), then weights are used and must be supplied in WT.

Constraint: WEIGHT = ’U’ or 'W’.

N — INTEGER Input
On entry: the number of observations, n.

Constraint: N > 2.

M — INTEGER Input
On entry: the number of variables in the data matrix, m.

Constraint: M > 1.

X(LDX,M) — real array Input

On entry: X(i,j) must contain the ith observation for the jth variable, for i = 1,2,...,n;
j=12,...,m

LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which GO3AAF
1s called. :

Constraint: LDX > N.

ISX(M) — INTEGER array Input
On entry: ISX(j) indicates whether or not the jth variable is to be included in the analysis.

If ISX(j) > 0, then the variable contained in the jth column of X is included in the principal
component analysis, for j =1,2,...,m.

Constraint: 1SX(j) > 0 for NVAR values of j.

S(M) — real array Input/Output

On eniry: the standardisations to be used, if any.

If MATRIX =’S’, then the first m elements of S must contain the standardisation coefficients, the
diagonal elements of o.

Constraint: if ISX(5) > 0, then S(j) > 0.0, for j=1,2,...,m.
On ezit: if MATRIX = ’S’, then S is unchanged on exit.

If MATRIX = ’C’, then S contains the variances of the selected variables. S(j) contains the variance
of the variable in the jth column of X if ISX(j) > 0.

If MATRIX = ’U’ or 'V’ then S is not referenced.

WT(x) — real array Input

On entry: if WEIGHT = 'W’, then the first n elements of WT must contain the weights to be used
in the principal component analysis.

If WT(i) = 0.0, then the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.

If WEIGHT = ’U’, then WT is not referenced and the effective number of observations is n.
Constraint: WT(i) > 0.0, for : = 1,2,...,n and the sum of weights > NVAR + 1.
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11:

12:

13:

14:

15:

16:

17:

18:
19:

NVAR — INTEGER Input

On entry: the number of variables in the principal component analysis, p.
Constraint: 1 < NVAR < min(N — 1, M).

E(LDE,6) — real array Output

On exit: the statistics of the principal component analysis.
E(é,1), the eigenvalues associated with the ith principal component, /\?, fori=1,2,...,p.
E(¢,2), the proportion of variation explained by the ith principal component, for i = 1,2,...,p.

E(¢,3), the cumulative proportion of variation explained by the first ith principal components, for
1=1,2,...,p.

E(i,4), the x? statistics, for i =1,2,...,p.
E(i,5), the degrees of freedom for the x? statistics, for i = 1,2,...,p.
If MATRIX # ’C’, then E(i,6) contains significance level for the x? statistic, for i = 1,2, .. P

If MATRIX = 'C’, then E(%, 6) is returned as zero.

LDE — INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDE > NVAR.

P(LDP,NVAR) — real array Output

On exit: the first NVAR columns of P contain the principal component loadings, a;. The jth column
of P contains the NVAR coefficients for the jth principal component.

LDP — INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDP > NVAR.

V(LDV,NVAR) — real array Output

On exit: the first NVAR columns of V contain the principal component scores. The jth column of
V contains the N scores for the jth principal component.

If WEIGHT = "W’, then any rows for which WT(7) is zero will be set to zero.

LDV — INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDV > N.

WEK(NVAR+*NVAR+5%(NVAR—1)) — real array Workspace
IFAIL — INTEGER Input/Quiput

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL = 1

On entry, M < 1,
or N<2
or NVAR < 1,
or NVAR > M,
or NVAR > N,
or LDX < N,
or LDV < N,
or LDP < NVAR,
or LDE < NVAR,
or MATRIX #°C’,’S’,’U’ or 'V’,
or STD #£°S’,’U’,’Z’ or 'E’,
or WEIGHT # U’ or 'W’.

IFAIL = 2
On entry, WEIGHT = "W’ and a value of WT < 0.0.
IFAIL = 3

On entry, there are not NVAR values of ISX > 0,
or WEIGHT = W’ and the effective number of observations is less than NVAR + 1.

IFAIL = 4
On entry, S(j) < 0.0 for some j = 1,2,...,m, when MATRIX =S’ and ISX(j) > 0.

IFAIL =5

The singular value decomposition has failed to converge. See FO2WEF. This is an unlikley error
exit.

IFAIL = 6

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

7 Accuracy

As GO3AAF uses a singular value decomposition of the data matrix, it will be less affected by ill-
conditioned problems than traditional methods using the eigenvalue decomposition of the variance-
covariance matrix.

8 Further Comments

None.

9 Example

A data set is taken from Cooley and Lohnes [2], it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and
unstandardised principal component scores requested.
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9.1 Program Text

Note. The list
Please read the

ing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential

Introduction to this manual, the results produced may not be identical for all implementations.

*
*
*

+

20

40

GO3AAF Example Program Text
Mark 17 Revised. NAG Copyright 1995.

.. Parameters .
INTEGER NMAX, MMAX
PARAMETER (NMAX=12,MMAX=3)
INTEGER NIN, NOUT
PARAMETER (NIN=5,N0UT=6)
. Local Scalars ..
INTEGER I, IFAIL, J, M, N, NVAR
CHARACTER MATRIX, STD, WEIGHT
. Local Arrays .
real E(MMAX,6), P(MMAX,MMAX), S(MMAX), V(NMAX,6MMAX),
WK (MMAX*MMAX+5% (MMAX-1)), WT(NMAX), X(NMAX,MMAX)
INTEGER ISX(MMAX)
.. External Subroutines ..
EXTERNAL GO3AAF

. Executable Statements ..
WRITE (NOUT,*) ’GO3AAF Example Program Results’
Skip heading in data file
READ (NIN,*)
READ (NIN,*) MATRIX, STD, WEIGHT, N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.'U’ .OR. WEIGHT.EQ.’u’) THEN
DO20I =1, N
READ (NIN,*) (X(I,J),J=1,M)
CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M), WT(I)
CONTINUE
END IF
READ (NIN,*) (ISX(J),J=1,M), NVAR
IF (MATRIX.EQ.’S’ .OR. MATRIX.EQ.’s’) READ (NIN,*) (S(J),J=1,M)
IFAIL = O

CALL GO3AAF(MATRIX,STD,WEIGHT,N,M,X,NMAX,ISX,S,WT,NVAR,E,MMAX,

+ P,MMAX,V,NMAX,WK,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Eigenvalues Percentage Cumulative Chisq DF Sig’

60

80

GO3AAF.6

WRITE (NOUT,*) ° variation variation’
WRITE (NOUT,*)
DO 60 I = 1, NVAR
WRITE (NOUT,99999) (E(I,J),J=1,6)
CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,*)
DO 80 I =1, NVAR
WRITE (NOUT,99998) (P(I,J),J=1,NVAR)
CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’Principal component scores’
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END
9.2 Example Data
GO3AAF Example Program Data
)v’ )E’ ,U) 10 3
7.0 4.0 3.0
4.0 1.0 8.0
6.0 3.0 5.0
8.0 6.0 1.0
8.05.07.0
7.0 2.09.0
5.0 3.0 3.0
9.0 5.0 8.0
7.0 4.05.0
8.0 2.0 2.0
i 1 1 3
9.3 Example Results
GO3AAF Example Program Results
Eigenvalues Percentage Cumulative Chisq DF
variation variation
8.2739 0.6515 0.6515 8.6127 5.0 0
3.6761 0.2895 - 0.9410 4.1183 2.0 0.
0.7499 0.0590 1.0000 0.0000 0.0 0
Eigenvalues
0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075
-0.9683 0.2731 -0.0842
Principal component scores
1 2.1561 -0.173 -0.107
2 -3.804 -2.887 -0.510
3 -0.153 -0.987 -0.269
4 4.707 1.302 -0.652
5 -1.294 2.279 -0.449
6 -4.099 0.144 0.803
7 1.626 -2.232 -0.803
8 -2.114 3.2561 0.168
9 0.235 0.373 -0.275
10 2.746 -1.069 2.094
[NP2834/17]

WRITE (NOUT,*)
DO 100 I =1, N
WRITE (NOUT,99997) I, (V(I,J),J=1,NVAR)
100 CONTINUE
END IF
STOP
%*
99999 FORMAT (1X,F11.4,2F12.4,F10.4,F8.1,F8.4)
99998 FORMAT (1X,8F9.4)
99997 FORMAT (1X,I2,(8F9.3))

GO3AAF
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GO3ACF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3ACF performs a canonical variate (canonical discrimination) analysis.

2 Specification

SUBROUTINE GO3ACF(WEIGHT, N, M, X, LDX, ISX, NX, ING, NG, WT, NIG,

1 CVM, LDCVM, E, LDE, NCV, CVX, LDCVX, TOL,
2 IRANKX, WK, IWK, IFAIL)

INTEGER N, M, LDX, ISX(M), NX, ING(N), NG, NIG(NG),
1 LDCVM, LDE, NCV, LDCVX, IRANKX, IWK, IFAIL
real X(LDX,M), WT(x), CVM(LDCVM,NX), E(LDE,6),

1 CVX(LDCVX,NG—1), TOL, WK(IWK)
CHARACTER*1 WEIGHT

3 Description

Let a sample of n observations on n, variables in a data matrix come from n, groups with ny,n,,...,n,

observations in each group, Z n; = n. Canonical variate analysis finds the linear combination of the
n, variables that maximizes the ratio of between-group to within-group variation. The variables formed,
the canonical variates, can be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within group sums of squares and
cross-products matrix. However, GO3ACF calculates the canonical variates by means of a singular value
decomposition (SVD) of a matrix V. Let the data matrix with variable (column) means subtracted be
X and let its rank be k; then the k by (n, — 1) matrix V is given by:

V=% Q> where Q, is an n by (n, — 1) orthogonal matrix that defines the groups and @ x is the
first k rows of the orthogonal matrix @ either from the QR decompostion of X:

X =QR
if X is of full column rank, i.e., k = n_, else from the SVD of X:
X =QDPT.
Let the SVD of V be:
V =U,AU]
then the non-zero elements of the diagonal matrix A, §;, for 7 = 1,2,...,1, are the [ canonical correlations

associated with the I canonical variates, where | = min(k, n).

The eigenvalues, /\?, of the within-group sums of squares matrix are given by:

62
2 __ 1
Ai_l-&?'

1

and the value of m; = )\f/ Z ’\? gives the proportion of variation explained by the ith canonical variate.
The values of the 7,’s give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem.

To test for a significant dimensionality greater than i the x? statistic:

1}
1
(n=1=ng—(k=ny)) > log(1+ A7)
j=i+1
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can be used. This is asymptotically distributed as a x? distribution with (k — i)(n, — 1 — 1) degrees of

freedom. If the test for 7 = h is not significant, then the remaining tests for ¢ > h should be ignored.

The loadings for the canonical variates are calulated from the matrix U,. This matrix is scaled so that
the canonical variates have unit within group variance.

In addition to the canonical variates loadings the means for each canonical variate are calculated for each
group.

Weights can be used with the analysis, in which case the weighted means are subtracted from each column
and then each row is scaled by an amount ,/w;, where w; is the weight for the ith observation (row).

4 References

[1] Chatfield C and Collins A J (1980) Introduction to multivariate analysis. Chapman and Hall
[2] Gnanadesikan R (1977) Methods for statistical data analysis of multivariate observations. Wiley

[3] Hammarling S (1985) The Singular Value Decomposition in Multivariate Statistics Signum Newsl..
20 (3) 2-25

[4] Kendall M G and Stuart A (1979) The advanced theory of statistics (3 volumes). Griffin (4th
Edition)

5 Parameters

1: WEIGHT — CHARACTER*1 Input

On entry: indicates if weights are to be used.
If WEIGHT = "U’, no weights are used.

If WEIGHT = "W’ or 'V’, weights are used and must be supplied in WT.
Constraint: WEIGHT =’"U’, "W’ or 'V".

In the case of WEIGHT = "W’ the weights are treated as frequencies and the effective number
of observations is the sum of the weights. If WEIGHT = ’V’, the weights are treated as being
inversely proportional to the variance of the observations and the effective number of observations
is the number of observations with non-zero weights.

2: N — INTEGER Input
On entry: the number of observations, n.

Constraint: N > NX + NG.

3: M — INTEGER Input

On entry: the total number of variables, m.

Constraint: M > NX.

4: X(LDX,M) — real array Input
On entry: X(i,j) must contain the ith observation for the jth variable, for ¢ = 1,2,... n;
j=12,...,m

5: LDX — INTEGER Input
On entry: the first dimension of the array X as declared in the (sub)program from which GO3ACF
is called.

Constraint: LDX > N.
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10:

11:

12:

13:

ISX(M) — INTEGER array Input
On entry: ISX(j) indicates whether or not the jth variable is to be included in the analysis.

If ISX(j) > 0, then the variables contained in the jth column of X is included in the canonical
variate analysis, for j = 1,2,...,m.

Constraint: ISX(j) > 0 for NX values of j.

NX — INTEGER Input

On entry: the number of variables in the analysis, n_.

Constraint: NX > 1.

ING(N) — INTEGER array Input

On entry: ING(¢) indicates which group the ith observation is in, for i = 1,2,...,n. The effective
number of groups is the number of groups with non-zero membership.

Constraint: 1 <ING(7) < NG, fori=1,2,...,n.

NG — INTEGER Input

On entry: the number of groups, n,.

Constraint: NG > 2.

WT(x) — real array Input
Note: the dimension of the array WT must be at least N if WEIGHT = "W’ or 'V’ and 1 otherwise.

On entry: if WEIGHT = "W’ or 'V’, then the first n elements of WT must contain the weights to
be used in the analysis.

If WT(¢) = 0.0, then the ith observation is not included in the analysis.
If WEIGHT = ’U’, then WT is not referenced.
Constraints:

WT(i) >0.0,fori=1,2,...,n,

n
Z WT(i) > NX+ effective number of groups.
1

NIG(NG) — INTEGER array Output
On exit: NIG(j) gives the number of observations in group j, for j =1,2,...,n,.
CVM(LDCVM,NX) — real array Output
On ezit: CVM(i, j) contains the mean of the jth canonical variate for the ith group, for ¢ =
L,2,...,n55=12,.. ., I; the remaining columns, if any, are used as workspace.
LDCVM — INTEGER Input

On entry: the dimension of the array CVM as declared in the (sub)program from which GO3ACF
is called.

Constraint: LDCVM > NG.
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14:

15:

16:

17:

18:

19:

20:

21:
22:

E(LDE,6) — real array Qutput
On ezit: the statistics of the canonical variate analysis.

E(7,1), the canonical correlations, é;, for i = 1,2,..., 1.

E(7,2), the eigenvalues of the within group sum of squares matrix, M fori=1,2,...,1

E(7,3), the proportion of variation explained by the ith canonical variate, fori=1,2,...,L

E(7,4), the x? statistic for the ith canonical variate, for i = 1,2,...,1.

E(7,5), the degrees of freedom for x? statistic for the ith canonical variate, for i = 1,2,...,1.
E(:,6), the significance level for the x? statistic for the ith canonical variate, for i = 1,2,...,1.
LDE — INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which GO3ACF
is called.

Constraint: LDE > min(NX, NG —1).

NCV — INTEGER Output

On ezit: the number of canonical variates, {. This will be the minimum of n,— 1 and the rank of X.

CVX(LDCVX,NG—1) — real array Output

On ezxit: the canonical variate loadings. CVX(i, j) contains the loading coefficient for the ith variable
on the jth canonical variate, for i = 1,2,...,n,; j = 1,2,...,[; the remaining columns, if any, are
used as workspace.

LDCVX — INTEGER Input

On entry: the first dimension of the array CVX as declared in the (sub)program from which GO3ACF
is called.

Constraint: LDCVX > NX.

TOL — real Input

On entry: the value of TOL is used to decide if the variables are of full rank and, if not, what 1is
the rank of the variables. The smaller the value of TOL the stricter the criterion for selecting the
singular value decomposition. If a non-negative value of TOL less than machine prectsion is
entered, then the square root of machine precision is used instead.

Constraint: TOL > 0.0.

IRANKX — INTEGER Qutput

On exit: the rank of the dependent variables.
If the variables are of full rank then IRANKX = NX.

If the variables are not of full rank then IRANKX is an estimate of the rank of the dependent
variables. IRANK is calculated as the number of singular values greater than TOLx (largest singular
value).

WK(IWK) — real array Workspace
IWK — INTEGER Input
On entry: the dimension of the array WK as declared in the (sub)program from which GO3ACF is
called.

Constraints:

if NX > NG — 1, then IWK > N x NX + max(5 x (NX — 1) + (NX + 1) x NX,N),
if NX < NG — 1, then IWK > N x NX + max(5 x (NX = 1) + (NG — 1) x NX,N).
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23: IFAIL — INTEGER Input/Output
On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL =1
On entry, NX < 1,
or NG < 2,
or M < NX,
or N < NX + NG,
or LDX < N,

or LDCVX < NX,
or LDCVM < NG,
or LDE < min(NX,NG-1),
or NX > NG-1 and IWK < N x NX + max(5x(NX-1)+(NX+1)xNX,N),
or NX < NG—1 and IWK < N x NX + max(5x(NX-1)+(NG-1)x NX,N),
or WEIGHT # ’U’, "W’ or 'V’,
or TOL < 0.0.
IFAIL = 2

On entry, WEIGHT = "W’ or "V’ and a value of WT < 0.0.
IFAIL = 3

On entry, a value of ING < 1,
or a value of ING > NG.

IFAIL = 4

On entry, the number of variables to be included in the analysis as indicated by ISX is not equal
to NX.

IFAIL =5
A singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL = 6

A canonical correlation is equal to 1. This will happen if the variables provide an exact indication
as to which group every observation is allocated.

IFAIL =7

On entry, less than two groups have non-zero membership, i.e., the effective number of groups is
less than 2,

or the effective number of groups plus the number of variables, NX, is greater than the
effective number of observations.

IFAIL = 8
The rank of the variables is 0. This will happen if all the variables are constants.
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7 Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition rather
than the traditional computing of a sum of squares matrix and the use of an eigenvalue decomposition,
GO3ACF should be less affected by ill conditioned problems.

8 Further Comments

None.

9 Example

A sample of nine observations, each consisting of three variables plus group indicator, is read in. There
are three groups. An unweighted canonical variate analysis is performed and the results printed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO3ACF Example Program Text
* Mark 18 Revised. NAG Copyright 1997.
* .. Parameters ..
INTEGER NMAX, MMAX, IWKMAX
PARAMETER (NMAX=9,MMAX=3, IWKMAX=50)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* .. Local Scalars ..
real TOL
INTEGER I, IFAIL, IRX, J, M, N, NCV, NG, NX
CHARACTER WEIGHT
* .. Local Arrays ..
real CVM(MMAX ,MMAX), CVX(MMAX,MMAX), E(MMAX,6),
+ WK (IWKMAX), WT(NMAX), X(NMAX,MMAX)
INTEGER ING(NMAX), ISX(2+MMAX), NIG(MMAX)
* .. External Subroutines ..
EXTERNAL GO3ACF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO3ACF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, M, KX, NG, WEIGHT
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.'’w’ .OR. WEIGHT.EQ.'’V’ .OR.
+ WEIGHT.EQ.’v’) THEN
DO 20I =1, N
READ (NIN,*) (X(I,J),J=1,M), WT(I), ING(I)
20 CONTINUE
ELSE
DO40I =1, N
READ (NIN,*) (X(I,J),J=1,M), ING(I)
40 CONTINUE
END IF
READ (5,*) (ISX(J),J=1,M)
TOL = 0.000001e0
IFAIL = 0
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CALL GO3ACF(WEIGHT,N,M,X,NMAX,ISX,NX,ING,NG,WT,NIG,CVM,MMAX,E,

+ MMAX,NCV,CVX,MMAX,TOL, IRX,WK,IWKMAX,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,99999) ’'Rank of X = ’, IRX
WRITE (NOUT,*)
WRITE (NOUT,*)
+ ’Canonical Eigenvalues Percentage CHISQ DF
WRITE (NOUT,*) ’Correlations Variation’
DO 60 I = 1, NCV
WRITE (NOUT,99998) (E(I,J),J=1,6)
60 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’Canonical Coefficients for X’
D080 I=1, KX
WRITE (NOUT,99997) (CVX(I,J),J=1,RCV)
80 CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’Canonical variate means’
DO 100 I = 1, NG
WRITE (NOUT,99997) (CVM(I,J),J=1,NCV)
100 CONTINUE
END IF
STOP
%*
99999 FORMAT (1X,A,I2)
99998 FORMAT (1X,2F12.4,F11.4,F10.4,F8.1,F8.4)
99997 FORMAT (1X,5F9.4)
END

9.2 Program Data

GO3ACF Example Program Data

9333’

13.3 10.6 21.2 1
13.6 10.2 21.0 2
14.2 10.7 21.1 3
13.4 9.4 21.01
13.2 9.6 20.1 2
13.9 10.4 19.8 3
12.9 10.0 20.5 1
12.2 9.9 20.7 2
13.9 11.0 19.1 3
1 1 1

9.3 Program Results
GO3ACF Example Program Results

Rank of X = 3

Canonical Eigenvalues Percentage CHISQ DF SIG
Correlations Variation
0.8826 3.5238 0.9795 7.9032 6.0 0.2453
0.2623 0.0739 0.0205 0.3564 2.0 0.8368

[NP3086/18]
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Canonical Coefficients for X
-1.7070 0.7277
-1.3481 0.3138
0.9327 1.2199

Canonical variate means
0.9841 0.2797
1.1805 -0.2632

-2.1646 -0.0164
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GO3ADF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GO3ADF performs canonical correlation analysis upon input data matrices.

2. Specification
SUBROUTINE GO3ADF (WEIGHT, N, M, Z, LDZ, ISZ, NX, NY, WT, E,

1 LDE, NCV, CVX, LDCVX, MCV, CVY, LDCVY, TOL, WK,
2 IWK, IFAIL)

INTEGER N, M, LDZ, ISZ(M), NX, NY, LDE, NCV, LDCVX, MCV,
1 1LDCVY, IWK, IFAIL

real z(LDZ,M), WT(*), E(LDE,6), CVX (LDCVX,MCV),
1 CVY (LDCVY,MCV), TOL, WK(IWK)

CHARACTER*1 WEIGHT

3. Description
Let there be two sets of variables, x and y. For a sample of n observations on n, variables in a
data matrix X and n y variables in a data matrix Y, canonical correlation analysis seeks to find a
small number of linear combinations of each set of variables in order to explain or summarise the
relationships between them. The variables thus formed are known as canonical variates.

Let the variance-covariance of the two data sets be

(Sx, S,y)
Sy Sy

and let
Z=15,5,5:5,

Yy T yx
then the canonical correlations can be calculated from the eigenvalues of the matrix X. However,
GO3ADF calculates the canonical correlations by means of a singular value decomposition
(SVD) of a matrix V. If the rank of the data matrix X is k, and the rank of the data matrix Y is
k, and both X and Y have had variable (column) means subtracted then the k, by k, matrix V is

given by:

V=00,
where Q, is the first k, rows of the orthogonal matrix Q either from the QR decompostion of X
if X is of full column rank, i.e. k, = n,:

X =Q.R,
or from the SVD of X if k, < n,:
X=Q.DpP!.

Similarly Q, is the first k, rows of the orthogonal matrix Q either from the QR decompostion of
Y if Y is of full column rank, i.e. k, = n,:

Y = Q,R,
or from the SVD of Y if k, < n:

Y = Q,DPT

yoyiy®
Let the SVD of V be:
V = U,AU;
then the non-zero elements of the diagonal matrix 4, §;, for i = 1,2,...,1, are the ! canonical
correlations associated with the / canonical variates, where | = min(k,k,).
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The eigenvalues, A2, of the matrix X are given by:
52
Al = ——.
1+ 8
The value of 7, = A7 / 3 A? gives the proportion of variation explained by the ith canonical

variate. The values of the x,’s give an indication as to how many canonical variates are needed
to adequately describe the data, i.e. the dimensionality of the problem.

To test for a significant dimensionality greater than i the 2 statistic:

(n=4(k,+k,)) 3, log(1+42)

J=itl

can be used. This is asymptotically distributed as a z” distribution with (k.—i) (k,~i) degrees of
freedom. If the test for i = K nin 18 DOt significant, then the remaining tests for i > k_. should be
ignored.

The loadings for the canonical variates are calculated from the matrices U, and U, respectively.
These matrices are scaled so that the canonical variates have unit variance.

References

[1] CHATFIELD, C. and COLLINS, A.J.
Introduction to Multivariate Analysis.
Chapman and Hall, 1980.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 3).
Griffin, 1976

[3] MORRISON, D.F.
Multivariate Statistical Methods.
McGraw Hill, 1967.

Parameters

WEIGHT — CHARACTER*1. Input
On entry: indicates if weights are to be used.
If WEIGHT = 'U' or ' (Unweighted), no weights are used.
If WEIGHT = 'W' or W' (Weighted), weights are used and must be supplied in WT.
Constraint: WEIGHT = 'U', W', 'W' or W',

N - INTEGER. Inpur
On entry: the number of observations, .
Constraint: N > NX + NY.

M — INTEGER. Input
On entry: the total number of variables, m.
Constraint: M 2 NX + NY.

Z(LDZ,M) - real array. Input

Onentry: Z(i,j) must contain the ith observation for the Jth variable, for i = 1,2,...n;
Jj=12,..m.

Both x and y variables are to be included in Z, the indicator array, ISZ, being used to assign
the variables in Z to the x or y sets as appropriate.
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s: LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
GO3ADF is called.

Constraint: LDZ 2 N.

6: ISZ(M) — INTEGER array. Input
On entry: ISZ(j) indicates whether or not the jth variable is included in the analysis and to
which set of variables it belongs.

If ISZ(j) > 0, then the variable contained in the jth column of Z is included as a x variable
in the analysis.

If ISZ(j) < 0, then the variable contained in the jth column of Z is included as a y variable
in the analysis.

If ISZ(j) = O, then the variable contained in the jth column of Z is not included in the
analysis.

Constraint: only NX elements of ISZ can be > 0 and only NY elements of ISZ can be < 0.

7: NX — INTEGER. Input
On entry: the number of x variables in the analysis, n,.
Constraint: NX 2 1.

8: NY - INTEGER. Input
On entry. the number of y variables in the analysis, n,.
Constraint: NY 2 1.

9:  WT(*) — real array. Input
Onentry: if WEIGHT = 'W' or 'w', then the first n elements of WT must contain the
weights to be used in the analysis.

If WT(i) = 0.0, then the ith observation is not included in the analysis. The effective
number of observations is the sum of weights.

If WEIGHT = 'U' or ‘v, then WT is not referenced and the effective number of
observations is n.

Constraint: WT(i) 2 0.0, fori = 1,2,..,n and the sum of weights 2 NX + NY + 1.

10: E(LDE,6) — real array. Output
On exit: the statistics of the canonical variate analysis.
E(i,1), the canonical correlations, &;, for i = 1,2,..L
E(i,2), the eigenvalues of %, A2 fori =12,
E(i,3), the proportion of variation explained by the ith canonical variate, for i = 1,2,...1
E(i4), the x* statistic for the ith canonical variate, for i = 1,2,...,1.
E(i,5), the degrees of freedom for 2 statistic for the ith canonical variate, for i = 1,2,...,1.
E(i,6), the significance level for the x’ statistic for the ith canonical variate, for

i=12...

11: LDE - INTEGER. Input
On entry: the first dimension of the array E as declared in the (sub)program from which
GO3ADF is called.

Constraint. LDE 2 min(NX,NY).

122 NCV - INTEGER. Output
On exit: the number of canonical correlations, . This will be the minimum of the rank of X
and the rank of Y.
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13:

14:

15:

16:

17:

18:

19:

20:

21:

Page 4

CVX(LDCVX,MCV) - real array. Output

Oneexit: the canonical variate loadings for the x variables. CVX(i,j) contains the loading
coefficient for the ith x variable on the Jth canonical variate.

LDCVX — INTEGER. Input

On entry: the first dimension of the array CVX as declared in the (sub)program from which
GO3ADF is called.

Constraint: LDCVX 2 NX.

MCYV - INTEGER. Input
On entry: an upper limit to the number of canonical variates.
Constraint: MCV 2 min(NX,NY ).

CVY(LDCVY,MCV) - real array. Output

On exit: the canonical variate loadings for the y variables. CVY (i.j) contains the loading
coefficient for the ith y variable on the Jth canonical variate,

LDCVY - INTEGER. Input

On entry: the first dimension of the array CVY as declared in the (sub)program from which
GO3ADEF is called.

Constraint: LDCVY 2 NY.

TOL - real. Input

On entry: the value of TOL is used to decide if the variables are of full rank and, if not, what
is the rank of the variables. The smaller the value of TOL the stricter the criterion for
selecting the singular value decomposition. If a non-negative value of TOL less than
machine precision is entered, then the square root of machine precision is used instead.

Constraint: TOL = 0.0.

WK(IWK) — real array. Workspace
IWK - INTEGER. Input

Onentry: the dimension of the array WK as declared in the (sub)program from which
GO3ADF is called.

Constraints: if NX > NY, then
IWK 2 NxNX+NX+NY+max((5x(NX—l)+NXxNX),NxNY),
if NX < NY, then
IWK 2 NxNY+NX+NY+max((5x(NY—1)+NYxNY),N><NX).

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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IFAIL = 1
On entry, NX < 1,
or NY < 1,
or M < NX + NY,
or N < NX + NY,
or MCV < min(NX,NY),
or LDZ < N,
or LDCVX < NX,
or LDCVY < NY,
or LDE < min(NX,NY),
or NX 2 NY
and IWK < NxNX+NX+NY+max((5x(NX—1)+NXxNX),NxNY),
or NX < NY
and IWK < NxNY+NX+NY+max((5x(NY-—l)+NYxNY),NxNX),
or WEIGHT = 'U', u, 'W' or 'W',
or TOL < 0.0.
IFAIL = 2

On entry, a WEIGHT = 'W' or ‘W' and value of WT < 0.0.

IFAIL = 3
On entry, the number of x variables to be included in the analysis as indicated by ISZ is not
equal to NX.
or the number of y variables to be included in the analysis as indicated by ISZ is not
equal to NY.
IFAIL = 4

On entry, the effective number of observations is less than NX + NY + 1.

IFAIL = 5

A singular value decomposition has failed to converge. See FO2WEF or FO2WUF. This is
an unlikely error exit.

IFAIL = 6

A canonical correlation is equal to 1. This will happen if the x and y variables are perfectly
correlated.

IFAIL = 7
On entry, the rank of the X matrix or the rank of the Y matrix is 0. This will happen if all
the x or y variables are constants.

7. Accuracy

As the computation involves the use of orthogonal matrices and a singular value decomposition
rather than the traditional computing of a sum of squares matrix and the use of an eigenvalue
decomposition, GO3ADF should be less affected by ill conditioned problems.

8. Further Comments
None.

9. Example

A sample of nine observations with two variables in each set is read in. The second and third
variables are x variables while the first and last are y variables. Canonical variate analysis is
performed and the results printed.
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9.1. Program Text

the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3ADF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters ..
INTEGER NMAX, IMAX, IWKMAX
PARAMETER (NMAX=9, IMAX=2, INKMAX=40)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* .. Local Scalars ..
real TOL
INTEGER I, IFAIL, IX, IY, J, M, N, NCV, NX, NY
CHARACTER WEIGHT
* .. Local Arrays ..
real CVX(IMAX, IMAX), CVY(IMAX,IMAX), E(IMAX, 6),
+ WK(IWKMAX), WT(NMAX), Z(NMAX,2*IMAX)
INTEGER ISZ (2*IMAX)
* .. External Subroutines ..
EXTERNAL GO3ADF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO3ADF Example Program Results’
* Skip heading in data file

READ (NIN, %) ,
READ (NIN,*) N, M, IX, IY, WEIGHT
IF (N.LE.NMAX .AND. IX.LE.IMAX .AND. IY.LE.IMAX) THEN
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 20 I =1, N
READ (NIN,*) (Z(I,J),J=1,M), WT(I)
20 CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (2(I,J),J=1,M)
40 CONTINUE
END IF
READ (5,+*) (ISz(J),J=1,M)
TOL = 0.000001e0

NX = IX
NY = IY
IFAIL = 0

CALL G03ADF(WEIGHT,N,M,Z,NMAX,ISZ,NX,NY,WT,E,IMAX,NCV,CVX,IMAX,
+ IMAX,CVY,IMAX,TOL,WK,IWKMAX,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT, 99999) ‘Rank of X = "+ NX, ' Rank of Y = ’, NY
WRITE (NOUT, *)
WRITE (NOUT, *)
+ "Canonical Eigenvalues Percentage Chisqg DF Sig’
WRITE (NOUT,*) ’correlations variation’
DO 60 I = 1, NCV
WRITE (NOUT, 99998) (E(I,J),J=1,6)
60 CONTINUE
WRITE (NOUT, )
WRITE (NOUT,*) ‘Canonical coefficients for X’
DO 80 1 = 1, 1IX
WRITE (NOUT, 99997) (CVX(I,J),J=1,NCV)
80 CONTINUE
WRITE (NOUT, x)
WRITE (NOUT,*) ’Canonical coefficients for Y’
DO 100 I =1, 1Y
WRITE (NOUT, 99997) (CVY(I,J),J=1,NCV)
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100 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,A,I2,A,I2)
99998 FORMAT (1X,2F12.4,F11.4,F10.4,F8.1,F8.4)
99997 FORMAT (1X,5F9.4)
END

9.2. Program Data

GO3ADF Example Program Data
9422 'U’

80.0 58.4 14.0 21.0
75.0 59.2 15.0 27.0
78.0 60.3 15.0 27.0
75.0 57.4 13.0 22.0
79.0 59.5 14.0 26.0
78.0 58.1 14.5 26.0
75.0 58.0 12.5 23.0
64.0 55.5 11.0 22.0
80.0 59.2 12.5 22.0
-1 1 1 -1

9.3. Program Results
GO3ADF Example Program Results

Rank of X = 2 Rank of Y = 2

Canonical Eigenvalues Percentage Chisg DF Sig
correlations variation
0.9570 10.8916 0.9863 14.3914 4.0 0.0061
0.3624 0.1512 0.0137 0.7744 1.0 0.3789

Canonical coefficients for X
-0.4261 1.0337
-0.3444 -1.1136

Canonical coefficients for ¥
-0.1415 0.1504
-0.2384 -0.3424
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GO3BAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3BAF computes orthogonal rotations for a matrix of loadings using a generalized orthomax
criterion.

2. Specification
SUBROUTINE GO3BAF (STAND, G, NVAR, K, FL, LDF, FLR, R, LDR, ACC,

1 MAXIT, ITER, WK, IFAIL)

INTEGER NVAR, K, LDF, LDR, MAXIT, ITER, IFAIL
real G, FL(LDF,K), FLR(LDF,K), R(LDR,K), ACC,
1 WK (2*NVAR+K*K+5% (K=1) )

CHARACTER*1 STAND

3. Description

Let A be the p by k matrix of loadings from a variable-directed multivariate method, e.g.
canonical variate analysis or factor analysis. This matrix represents the relationship between the
original p variables and the k orthogonal linear combinations of these variables, the canonical
variates or factors. The latter are only unique up to a rotation in the k-dimensional space they
define. A rotation can then be found that simplifies the structure of the matrix of loadings, and
hence the relationship between the original and the derived variables. That is the elements, /'L,.;, of

the rotated matrix, A*, are either relatively large or small. The rotations may be found by
minimizing the criterion:

. L o Y| 2 ?

v=3Sopt - 5[Ea]
Fli=t Pj=1 =1

where the constant ¥ gives a family of rotations with y = 1 giving varimax rotations and y = 0

giving quartimax rotations.

It is generally advised that factor loadings should be standardised, so that the sum of squared

elements for each row is one, before computing the rotations.

The matrix of rotations, R, such that A* = AR, is computed using first an algorithm based on
that described by Cooley and Lohnes [1], which involves the pairwise rotation of the factors.
Then a final refinement is made using a method similar to that described by Lawley and Maxwell
[2], but instead of the eigenvalue decomposition the algorithm has been adapted to incorporate a
singular value decomposition.

4. References
[1] COOLEY, W.C. and LOHNES, P.R.
Multivariate Data Analysis.
Wiley, 1971.
[2] LAWLEY, D.N. and MAXWELL, A.E.
Factor Analysis as a Statistical Method.
Butterworths, (2nd Edition) 1971.
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Parameters
STAND — CHARACTER*1. Input
On entry: indicates if the matrix of loadings is to be row standardised before rotation.
If STAND = 'S’ the loadings are row standardised.
If STAND = 'U’ the loadings are left unstandardised.
Constraint: STAND = 'S' or 'U".

G - real. Input

Onentry: the criterion constant, ¥, with Y = 1.0 giving varimax rotations and y =00
giving quartimax rotations.

Constraint: G 2 0.0.

NVAR - INTEGER. Input
On entry: the number of original variables, D.
Constraint: NVAR 2 K.

K — INTEGER. Input
On entry: the number of derived variates or factors, «.
Constraint: K 2 2.

FL(LDFK) - real array. Input/ Output

On entry: the matrix of loadings, A. FL(i,j) must contain the loading for the ith variable on
the jth factor, for i = 1,2,...p;j = 1,2,....

Onexit: if STAND = 'S' the elements of FL are standardised so that the sum of squared
elements for each row is 1.0 and then after the computation of the rotations are rescaled; this
may lead to slight differences between the input and output values of FL. If STAND = U’
FL will be unchanged on exit. :

LDF — INTEGER. Input

On entry: the first dimension of the arrays FL. and FLR as declared in the (sub)program
from which GO3BAF is called.

Constraint: LDF 2 NVAR.

FLR(LDFK) — real array. Output
On exit: the rotated matrix of loadings, A*. FLR( i,j) will contain the rotated loading for the

ith variable on the jth factor, for i = L2,..p;j =12,k

R(LDRK) - real array. Output
On exit: the matrix of rotations, R.

LDR - INTEGER. Input

On entry: the first dimension of the array R as declared in the (sub)program from which
GO3BAF is called.

Constraint: LDR 2 K.
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10:

11:

12:

13:

14:

ACC - real. Input

On entry: indicates the accuracy required. The iterative procedure of Cooley and Lohnes [1]
will be stopped and the final refinement computed when the change in V is less than
ACCxmax(1.0,V). If ACC is greater than or equal to 0.0 but less than machine precision
or if ACC is greater than 1.0, then machine precision will be used instead.

Suggested value: 0.00001.
Constraint. ACC 2 0.0.

MAXIT - INTEGER. Input
On entry: the maximum number of iterations.
Suggested value: 30.
Constraint: MAXIT 2 1.

ITER — INTEGER. Output
On exit: the number of iterations performed.

WK (2*NVAR+K*K+5*(K-1) ) — real array. Workspace

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Seciion 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

On entry, K < 2,

or NVAR < K,

or G < 0.0,

or LDF < NVAR,

or LDR < K,

or ACC < 0.0,

or MAXIT < 0,

or STAND =z 'S' or 'U".
IFAIL = 2

The singular value decomposition has failed to converge. This is an unlikely error exit.

IFAIL = 3

The algorithm to find R has failed to reach the required accuracy in the given number of
iterations. The user should try increasing ACC or increasing MAXIT. The returned solution
should be a reasonable approximation.

Accuracy
The accuracy is determined by the value of ACC.
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8. Further Comments

If the results of a principal component analysis as carried out by GO3AAF are to be rotated, the
loadings as returned in the array P by GO3AAF can be supplied via the parameter FL to
GO3BAF. The resulting rotation matrix can then be used to rotate the principal component scores
as returned in the array V by GO3AAF. The routine FO6YAF may be used for this matrix
multiplication.

9. Example

The example is taken from Lawley and Maxwell [2] (page 75). The results from a factor anaysis
of ten variables using three factors are input and rotated using varimax rotations without
standardising rows.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3BAF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=10, MMAX=3)
* .. Local Scalars ..
real ACC, G
INTEGER I, IFAIL, ITER, J, K, MAXIT, NVAR
CHARACTER STAND
* .. Local Arrays ..
real FL(NMAX,MMAX), FLR(NMAX,MMAX), R(MMAX,MMAX),
+ WK(2*NMAX+MMAX*MMAX+5*(MMAX-1) )
* .. External Subroutines ..
EXTERNAL GO3BAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘GO3BAF Example Program Results’
* Skip heading in data file

READ (NIN, %)
READ (NIN,*) NVAR, K, G, STAND, ACC, MAXIT
IF (NVAR.LE.NMAX .AND. K.LE.MMAX) THEN
DO 20 I = 1, NVAR
READ (NIN,*) (FL(I,J),J=1,K)
20 CONTINUE
IFAIL = 0

CALL GO3BAF(STAND, G, NVAR, K, FL, NMAX, FLR, R, MMAX, ACC,MAXIT, ITER,
+ WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,=*) ’ Rotated factor loadings’
WRITE (NOUT, *)
DO 40 I = 1, NVAR
WRITE (NOUT,99999) (FLR(I,J),J=1,K)
40 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,x) ’ Rotation matrix’
WRITE (NOUT, x)
DO 60 I =1, K
WRITE (NOUT,99999) (R(I,J),J=1,K)
60 CONTINUE
END IF
STOP
*
99999 FORMAT (4(2X,6F8.3))
END
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9.2. Program Data

GO3BAF

10 3
.788
.874
.814
.798
. 641
.755
.782
.767

le¥oXoloNoNoloNoNo )

~N
S W
=W

9.3. Program Results
GO3BAF Example Program Results

Example Program Data
IUI

1.0
-0.

0.
-0
-0.

0
-0.
-0
-0
-0.
-0.

152
381

.043

170

.070

298

.221
.091

384
101

0.
.352
0.
.213
-0.
-0.
0.
0.
0.
0.
0.

-0

-0

00001 20

041

204
042
067
028
358
229
071

Rotated factor

0.329
0.849
0.
0.
0.
0.
0.
0.
0.209
0.

450
345
453
263
332
472

423

-0.289
-0.273
-0.327
-0.397
-0.276
-0.615
-0.561
-0.684
-0.754
-0.514

loadings

Rotation matrix

0.
0.
0.

633
758
155

-0.534

0.573

-0.622

-0.
0.
0.

.759
.340
.633
.657
.370
.464
.485
-0.
-0.
-0.

183
354
409

560
311
768

GO3BAF
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GO3BCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GO3BCF computes Procrustes rotations in which an orthogonal rotation is found so that a
transformed matrix best matches a target matrix.

Specification
SUBROUTINE GO3BCF (STAND, PSCALE, N, M, X, LDX, ¥, LDY, YHAT,
1 R, LDR, ALPHA, RSS, RES, WK, IFAIL)
INTEGER N, M, LDX, LDY, LDR, IFAIL
real X(LDX,M), Y(LDY,M), YHAT(LDY,M), R(LDR,M), ALPHA, RSS,
1 RES (N), WK(M*M+7*M)

CHARACTER*1 STAND, PSCALE

Description

Let X and Y be n by m matrices. They can be considered as representing sets of » points in a
m-dimensional space. The X matrix may be a matrix of loadings from say factor analysis or
canonical variate analysis and the Y matrix may be a postulated pattern matrix or the loadings
from a different sample. The problem is to relate the two sets of points without disturbing the
relationships between the points in each set. This can be achieved by translating, rotating and
scaling the sets of points. The Y matrix is considered as the target matrix and the X matrix is
rotated to match that matrix.

First the two sets of points are translated so that their centroids are at the origin to give X, and
Y., i.e. the matrices will have zero column means. Then the rotation of the translated X matrix

c

which minimizes the sum of squared distances between corresponding points in the two sets is
found. This is computed from the singular value decomposition of the matrix:

xTy, = UDV",
where U and V are orthogonal matrices and D is a diagonal matrix. The matrix of rotations, R, is
computed as:

R = UV".
After rotation a scaling or dilation factor, &, may be estimated by least-squares. Thus the final set
of points that best match Y is given by:

Y. = aX.R.
Before rotation both sets of points may be normalized to have unit sums of squares or the X

matrix may be normalized to have the same sum of squares as the Y matrix. After rotation the
results may be translated to the original Y centroid.

The ith residual, r;, is given by the distance between the point given in ith row of ¥ and the point
given in the ith row of Y. The residual sum of squares is also computed.

References

[1] KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.

[2] LAWLEY, D.N. and MAXWELL, A.E.
Factor Analysis as a Statistical Method.
Butterworths, (2nd Edition) 1971.

[NP2136/15] Page 1



GO03BCF GO3 — Multivariate Methods

S.
1:

Page 2

Parameters
STAND — CHARACTER*1. Input
On entry: indicates if translation/normalization is required.
If STAND = 'N' there is no translation or normalization.
If STAND = 'Z' there is translation to the origin (i.e. to zero).
If STAND = 'C' there is translation to origin and then to the Y centroid after rotation.
If STAND = 'U' there is unit normalization.
If STAND = 'S’ there is translation and normalization (i.e. there is standardization).

If STAND = 'M' there is translation and normalization to Y scale, then translation to the ¥
centroid after rotation (i.e. they are matched).

Constraint: STAND = 'N','Z', 'C', 'U', 'S' or 'M..

PSCALE — CHARACTER*1, Input
On entry: indicates if least-squares scaling is to be applied after rotation.
If PSCALE = 'S', then scaling is applied.
If PSCALE = 'U', then no scaling is applied.
Constraint: PSCALE = 'S' or 'U'".

N — INTEGER. Input
On entry: the number of points, 7.
Constraint: N 2 1.

M — INTEGER. Input
On entry: the number of dimensions, m.
Constraint: M 2 1.

X(LDX,M) - real array. Input/ Output
On entry: the matrix to be rotated, X.
Onexit: if STAND = 'N', then X will be unchanged.

If STAND = 'Z','C', 'S' or 'M, then X will be translated to have zero column means.
If STAND = 'U’ or 'S', then X will be scaled to have unit sum of squares.
If STAND = 'M,, then X will be scaled to have the same sum of squares as Y.
LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3BCF is called.

Constraint: LDX > N.

Y(LDY,M) — real array. Input/ Output
On entry: the target matrix, Y.
Oneexit: if STAND = 'N', then Y will be unchanged.

If STAND = 'Z' or 'S', then Y will be translated to have zero column means.
If STAND = U’ or 'S', then Y will be scaled to have unit sum of squares.
If STAND = 'C' or ‘M, then Y will be translated and then after rotation translated back.

The output Y should be the same as the input Y except for rounding errors.
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l1:

12:

13:

14:

15:

16:

LDY — INTEGER. Input

On entry: the first dimension of the arrays Y and YHAT as declared in the (sub)program
from which GO3BCF is called.

Constraint: LDY 2 N.
YHAT(LDY,M) — real array. Output

A

On exit: the fitted matrix, Y.

R(LDR M) - real array. Output
On exit: the matrix of rotations, R, see Section 8.

LDR — INTEGER. Input

On entry: the first dimension of the array R as declared in the (sub)program from which
GO3BCF is called.

Constraint: LDR 2 M.

ALPHA - real. Output
On exit: if PSCALE = 'S' the scaling factor, ¢; otherwise ALPHA is not set.

RSS — real. Output
On exit: the residual sum of squares.

RES(N) — real array. Output
On exit: the residuals, r;, for i = 1,2,...n.

WK (M*M+7*M) — real array. Workspace

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1,
or M«<1,
or LDX < N,
or LDY < N,
or LDR < M,
or STAND # 'N','Z','C', 'U','S'or 'M,
or PSCALE # 'S'or 'U'.
IFAIL = 2

On entry, either X or Y contain only zero-points (possibly after translation) when
normalization is to be applied.

IFAIL = 3
The ¥ matrix contains only zero-points when least-squares scaling is applied.
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IFAIL = 4
The singular value decomposition has failed to converge. This is an unlikely error exit.

7. Accuracy

The accuracy of the calculation of the rotation matrix largely depends upon the singular value
decomposition. See FO2WEEF for further details.

8. Further Comments

Note that if the matrix XY is not of full rank, then the matrix of rotations, R, may not be unique
even if there is a unique solution in terms of the rotated matrix, ¥,. The matrix R may also
include reflections as well as pure rotations, see Krzanowski [11.

If the column dimensions of the X and Y matrices are not equal, the smaller of the two should be

supplemented by columns of zeros. Adding a column of zeros to both X and Y will have the
effect of allowing reflections as well as rotations.

9. Example

Three points representing the vertices of a triangle in two dimensions are input. The points are
translated and rotated to match the triangle given by (0,0),(1,0),(0,2) and scaling is applied
after rotation. The target matrix and fitted matrix are printed along with additional information.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3BCF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=3, MMAX=2)
* .. Local Scalars ..
real ALPHA, RSS
INTEGER I, IFAIL, J, M, N
CHARACTER SCALE, STAND
* .. Local Arrays
real R(MMAX,MMAX), RES(NMAX), WK(MMAX*MMAX+7*MMAX ),
+ X(NMAX,MMAX), Y(NMAX,MMAX), YHAT(NMAX,MMAX)
* .. External Subroutines
EXTERNAL GO3BCF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO3BCF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N, M, STAND, SCALE
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
DO 20 I =1, N
READ (NIN,*) (X(I,J),J=1,M)
20 CONTINUE
DO 40 I =1, N
READ (NIN,=*) (Y(I,J),J=1,M)
40 CONTINUE
IFAIL = 0

CALL GO3BCF (STAND, SCALE,N,M, X, NMAX, Y, NMAX, YHAT, R, MMAX, ALPHA,
+ RSS, RES, WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ' Rotation Matrix’
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60

80

100

*

99999
99998

WRITE (NOUT, %)
DO 60 I =1, M
WRITE (NOUT, 99999) (R(I,J),Jd=1,M)
CONTINUE
IF (SCALE.EQ.’S’ .OR. SCALE.EQ.’s’) THEN
WRITE (NOUT, *)
WRITE (NOUT,99998) ’ Scale factor = ', ALPHA
END IF
WRITE (NOUT, *)
WRITE (NOUT,*) ' Target Matrix’
WRITE (NOUT, *)
DO 80 I =1, N
WRITE (NOUT, 99999) (Y(I,J),J=1,M)
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) ' Fitted Matrix’
WRITE (NOUT, *)
DO 100 I =1, N
WRITE (NOUT,99999) (YHAT(I,J),J=1,M)
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99998) 'RSS = ', RSS

END IF
STOP

FORMAT (6(2X,F7.3))
FORMAT (1X,A,F10.3)
END

9.2. Program Data
GO3BCF EXAMPLE PROGRAM DATA

oOrRrOrRHFHOW
o
frt
~
[2))

ISI

9.3. Program Results
GO3BCF Example Program Results

Rotation Matrix

0.967 0.254
-0.254 0.967

Scale factor = 1.556

oo

|
oo

RSS

Target Matrix

.000 0.000
.000 0.000
.000 2.000

Fitted Matrix

.093 0.024
.080 0.026
.013 1.950

0.019

GO03BCF
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GO3CAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3CAF computes the maximum likelihood estimates of the parameters of a factor analysis
model. Either the data matrix or a correlation/covariance matrix may be input. Factor loadings,
communalities and residual correlations are returned.

2. Specification
SUBROUTINE GO3CAF (MATRIX, WEIGHT, N, M, X, LDX, NVAR, ISX,

1 NFAC, WT, E, STAT, COM, PSI, RES, FL, LDFL,
2 IOP, IWK, WK, LWK, IFAIL)

INTEGER N, M, LDX, NVAR, ISX(M), NFAC, LDFL, IOP(5),
1 IWK(4*NVAR+2), LWK, IFAIL

real X(LDX,M), WT(*), E(NVAR), STAT(4), COM(NVAR),
1 PSI(NVAR), RES(NVAR*(NVAR-1)/2), FL(LDFL,NFAC),
2 WK (LWK)

CHARACTER*1 MATRIX, WEIGHT

3. Description

Let p variables, x,,x,,....x,, With variance-covariance matrix X be observed. The aim of factor
analysis is to account for the covariances in these p variables in terms of a smaller number, k, of
hypothetical variables, or factors, f, f,,...f,. These are assumed to be independent and to have
unit variance. The relationship between the observed variables and the factors is given by the
model:

k
x; = Z}’ijfj +e i=12,.,p
=l

where A, for i = 1,2,...p; j = 1,2,...k, are the factor loadings and e;, for i = 1,2,...p, are
independent random variables with variances y;, for i = 1,2,...,p. The y; represent the unique
component of the variation of each observed variable. The proportion of variation for each
variable accounted for by the factors is known as the communality. For this routine it is assumed
that both the k factors and the e;’s follow independent normal distributions.

The model for the variance-covariance matrix, X, can be written as:

I=AAT + ¥, (1)
where A is the matrix of the factor loadings, 4;;, and ¥ is a diagonal matrix of unique variances,
v, fori = 1,2,..p.

The estimation of the parameters of the model, A and ¥, by maximum likelihood is described by
Lawley and Maxwell [2]. The log likelihood is:

—(n-1)log(|Z]) - 4(n—1)trace(SZ™') + constant,

where 7 is the number of observations, § is the sample variance-covariance matrix or if weights
are used S is the weighted sample variance-covariance matrix and n is the effective number of
observations, that is the sum of the weights. The constant is independent of the parameters of the
model. A two stage maximization is employed. It makes use of the function F(¥), which is, up
to a constant, —2/ (n—1) times the log likelihood maximized over A. This is then minimized with
respect to ¥ to give the estimates, ¥, of ¥. The function F(¥) can be written as:

P

F(¥) = 3 (6-log6) - (p=h) ,

Jj=kt1
where values 6;, for j = 1,2,...,p are the eigenvalues of the matrix:

Sa = W—l/2s qj—l/Z.
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2:

The estimates A, of A, are then given by scaling the eigenvectors of S*, which are denoted by V:
A = WI/ZV( 6“1) 1/2,
where © is the diagonal matrix with elements 6;, and / is the identity matrix.

The minimization of F(¥) is performed using EO4LBF which uses a modified Newton
algorithm. The computation of the Hessian matrix is described by Clarke [1]. However, instead
of using the eigenvalue decomposition of the matrix S* as described above the singular value
decomposition of the matrix R¥~"" is used, where R is obtained either from the QR
decomposition of the (scaled) mean centred data matrix or from the Cholesky decomposition of
the correlation/covariance matrix. The routine EO4LBF ensures that the values of Y, are greater
than a given small positive quantity, J, so that the communality is always less than one. This
avoids the so called Heywood cases.

In addition to the values of A, ¥ and the communalities, GO3CAF returns the residual
correlations, i.e. the off-diagonal elements of C — (AAT+¥) where C is the sample correlation
matrix. GO3CAF also returns the test statistic:

x° = [n=1-(2p+5)/6-2k/3)F (¥)

which can be used to test the goodness of fit of the model (1), see Lawley and Maxwell [2] and
Morrison [4].

References

[1] CLARKE, M.R.B.
A Rapidly Convergent Method for Maximum Likelihood Factor Analysis.
Br. J. Math. Statist. Psych., 1970.

[2] LAWLEY, D.N. and MAXWELL, AE.
Factor Analysis as a Statistical Method.
Butterworths, (2nd Edition) 1971.

[3] HAMMARLING, S.
The Singular Value Decomposition in Multivariate Statistics.
Signum Newsletter, 20, pp. 2-25, 1985.

[4] MORRISON, DF.
Multivariate Statistical Methods.
McGraw-Hill, 1967.

Parameters
MATRIX — CHARACTER*1. Input
On entry: selects the type of matrix on which factor analysis is to be performed.

If MATRIX = D' (Data input), then the data matrix will be input in X and factor analysis
will be computed for the correlation matrix.

If MATRIX = 'S', then the data matrix will be input in X and factor analysis will be
computed for the covariance matrix, i.e. the results are scaled as described in Section 8.

If MATRIX = 'C', then the correlation/variance-covariance matrix will be input in X and
factor analysis computed for this matrix.

See Section 8 for further comments.
Constraint: MATRIX = D', 'S or 'C".

WEIGHT — CHARACTER*1. Input
Onentry: if MATRIX = 'D' or 'S', WEIGHT indicates if weights are to be used.
If WEIGHT = 'U’, then no weights are used.
If WEIGHT = 'W', then weights are used and must be supplied in WT.
Note: if MATRIX = 'C', WEIGHT is not referenced.
Constraint: if MATRIX = D' or 'S', WEIGHT = 'U' or 'W".

Page 2 [NP2136/15)



GO3 — Multivariate Methods GO3CAF

10:

11:

N - INTEGER. Input
On entry: if MATRIX = 'D' or 'S' the number of observations in the data array X.

If MATRIX = 'C' the (effective) number of observations used in computing the (possibly
weighted) correlation/variance-covariance matrix input in X.

Constraint: N > NVAR.

M — INTEGER. Input
On entry: the number of variables in the data/correlation/variance-covariance matrix.
Constraint: M 2 NVAR.

X(LDX,M) — real array. Input
On entry: the input matrix.

If MATRIX = D' or 'S', then X must contain the data matrix, i.e. X(i,j) must contain the
ith observation for the jth variable, for i = 1,2,..,n;j = 1,2,..,M.

If MATRIX = 'C, then X must contain the correlation or variance-covariance matrix. Only
the upper triangular part is required.

LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3CAF is called.

Constraints: if MATRIX = D' or 'S, then LDX 2 N,
if MATRIX = 'C', then LDX 2 M.

NVAR - INTEGER. Input
On entry: the number of variables in the factor analysis, p.
Constraint: NVAR 2 2.

ISX(M) — INTEGER array. Input

On entry: ISX(j) indicates whether or not the jth variable is included in the factor analysis.
If ISX(j) 2 1, then the variable represented by the jth column of X is included in the
analysis; otherwise it is excluded, for j = 1,2,...M.

Constraint: ISX(j) > 0 for NVAR values of j.

NFAC — INTEGER. Input
On entry: the number of factors, k.
Constraint: 1 < NFAC < NVAR.

WT(*) — real array. Input

On entry: if WEIGHT = 'W' and MATRIX = D'or 'S', WT must contain the weights to be
used in the factor analysis. The effective number of observations in the analysis will then be
the sum of weights. If WT(i) = 0.0, then the ith observation is not included in the analysis.

If WEIGHT = "U' or MATRIX = 'C', WT is not referenced and the effective number of
observations is n.

Constraint: if WEIGHT = 'W', then WT(i) 2 0.0, for i = 1,2,...,n, and the sum of
weights > NVAR.

E(NVAR) - real array. Output
On exit: the eigenvalues 6;, for i = 1,2,...,p.
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12:

13:

14:

15:

16:

17:

18:

19:

STAT (4) — real array. Ouwtput
On exit: the test statistics.
STAT(1) contains the value F( ¥).
STAT(2) contains the test statistic, y2.
STAT(3) contains the degrees of freedom associated with the test statistic.
STAT(4) contains the significance level.

COM(NVAR) - real array. Output
On exit: the communalities.

PSI(NVAR) - real array. Output
On exit: the estimates of y;, fori = 1,2,...p.

RES(NVAR*(NVAR-1)/2) — real array. Output

On exit: the residual correlations. The residual correlation for the ith and Jjth variables is
stored in RES((j—1) (j=2)/2+i),i < j.

FL(LDFL,NFAC) - real array. Output
On exit: the factor loadings. FL(i,j) contains }{,-j, fori =12,..p;j=12,..k.

LDFL — INTEGER. Input

On entry: the first dimension of the array FL as declared in the (sub)program from which
GO3CAF is called.

Constraint: LDFL > NVAR.

IOP(5) — INTEGER array. Input
On entry: options for the optimization. There are four options to be set:
iprint — controls iteration monitoring;

if iprint < 0, then there is no printing of information else if iprint > 0, then
information is printed at every iprint iterations. The information printed consists of the
value of F(¥) at that iteration, the number of evaluations of F(¥), the current
estimates of the communalities and an indication of whether or not they are at the

boundary.
maxfun — the maximum number of function evaluations.
acc — the required accuracy for the estimates of ;.
eps — a lower bound for the values of y, see Section 3.
Let € = machine precision then if IOP(1) = 0, then the following default values are used:

iprint = -1
maxfun = 100p
acc = 104/e
eps =€
If IOP(1) # O, then
iprint = IOP(2)
maxfun = IOP(3)
acc = 107 where [ = IOP(4)
eps = 107 where I = IOP(5)

Constraint. if IOP(1) # 0, then IOP(i), for i = 3,4,5 must be such that maxfun 2 1,
€<acc <10and € < eps < 1.0.

IWK (4*NVAR+2) — INTEGER array. Workspace
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20:
21:

22:

WK (LWK) — real array. Workspace
LWK — INTEGER. Input

On entry: the length of the workspace.

Constraints: if MATRIX = D' or 'S, then
LWK 2 max((SxNVARxNVAR+33xNVAR—4)/2,
NxNVAR + 7xNVAR + NVARx(NVAR-1)/2).

If MATRIX = 'C', then
LWK 2 (5XxNVARXNVAR+33xXNVAR-4)/2.

IFAIL — INTEGER. Input! Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, LDFL < NVAR,
or NVAR < 2,
or N £ NVAR,
or NFAC < 1,
or NVAR < NFAC,
or M < NVAR,
or MATRIX = D'or 'S'and LDX < N,
or MATRIX = 'C' and LDX < M,
or MATRIX # D''S' or 'C,
or MATRIX = 'D' or 'S' and WEIGHT # 'U' or 'W',
or IOP(1) # 0 and IOP(3) is such that maxfun < 1,
or IOP(1) # 0 and IOP(4) is such that acc 2 1.0,
or IOP(1) # 0 and IOP(4) is such that acc < machine precision,
or IOP(1) # 0 and IOP(5) is such that eps 2 1.0,
or IOP(1) # 0 and IOP(5) is such that eps < machine precision,
or MATRIX = 'C' and LWK < (5XNVARXNVAR+33xNVAR-4)/2,
or MATRIX = D' or 'S' and
LWK < max((5XNVARXNVAR+33xXNVAR-4)/2,
NXNVAR + 7XNVAR + NVARx(NVAR-1)/2).
IFAIL = 2

On entry, WEIGHT = 'W' and a value of WT < 00.

IFAIL = 3

On entry, there are not exactly NVAR elements of ISX > 0, or the effective number of
observations £ NVAR.
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Page 6

IFAIL = 4

On entry, MATRIX = D' or 'S' and the data matrix is not of full column rank, or
MATRIX = 'C' and the input correlation/variance-covariance matrix is not positive
definite.

This exit may also be caused by two of the eigenvalues of S* being equal; this is rare (see
[2]), and may be due to the data/correlation matrix being almost singular.

IFAIL = 5
A singular value decomposition has failed to converge. This is a very unlikely error exit.

IFAIL = 6

The estimation procedure has failed to converge in the given number of iterations. Change
IOP to either increase number of iterations maxfun or increase the value of acc.

IFAIL = 7

The convergence is not certain but a lower point could not be found. See EO4LBF for
further details. In this case all results are computed.

Accuracy

The accuracy achieved is discussed in EO4LBF with the value of the parameter XTOL given by
acc as described in Section 5.

Further Comments

The factor loadings may be orthogonally rotated by using GO3BAF and factor score coefficients
can be computed using GO3CCF.

The maximum likelihood estimators are invariant to a change in scale. This means that the results
obtained will be the same (up to a scaling factor) if either the correlation matrix or the
variance-covariance matrix is used. As the correlation matrix ensures that all values of Y, are
between 0 and 1 it will lead to a more efficient optimization. In the situation when the data
matrix is input the results are always computed for the correlation matrix and then scaled if the
results for the covariance matrix are required. When the user inputs the covariance/correlation
matrix the input matrix itself is used and so the user is advised to input the correlation matrix
rather than the covariance matrix.

Example

The example is taken from Lawley and Maxwell [2]. The correlation matrix for nine variables is
input and the parameters of a factor analysis model with three factors are estimated and printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3CAF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, MMAX, LWK
PARAMETER (NMAX=9, MMAX=9, LWK=349)
* .. Local Scalars ..
INTEGER I, IFAIL, J, L, M, N, NFAC, NVAR
CHARACTER MATRIX, WEIGHT
* .. Local Arrays ..
real COM(MMAX), E(MMAX), FL(MMAX,MMAX), PSI(MMAX),
+ RES (MMAX* (MMAX-1)/2), STAT(4), WK(LWK), WT (NMAX) ,
+ X(NMAX, MMAX)
INTEGER IOP(5), ISX(MMAX), IWK(4*MMAX+2)
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40

60

80

100

99999
99998
99997

[NP2136/15)

.. External Subroutines ..

EXTERNAL GO3CAF

.. Executable Statements ..

WRITE (NOUT,*) ’‘GO3CAF Example Program Results’
Skip headings in data file

READ (NIN, %)

READ (NIN,*) MATRIX, WEIGHT, N, M, NVAR, NFAC

IF (M.LE.MMAX .AND. (MATRIX.EQ.’C’ .OR. MATRIX.EQ.’c’

+ NMAX)) THEN
IF (MATRIX.EQ.’C’ .OR. MATRIX.EQ.’c’) THEN
DO 20 I =1, M
READ (NIN,*) (X(I,J),J=1,M)

.OR.

GO3CAF

N.LE.

CONTINUE
ELSE
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 40 I =1, N
READ (NIN, *) (X(1,J),3d=1,M), WT(I)
CONTINUE
ELSE
DO 60 I =1, N
READ (NIN,*) (X(I,J),Jd=1,M)
CONTINUE
END IF
END IF
READ (NIN,*) (ISX(J),Jd=1,M)
READ (NIN,*) (IOP(J),J=1,5)
IFAIL = -1
CALL G03CAF(MATRIX,WEIGHT,N,M,X,NMAX,NVAR,ISX,NFAC,WT,E,STAT,
+ CoM, PSI, RES, FL, MMAX, IOP, IWK, WK, LWK, IFAIL)
IF (IFAIL.EQ.O0 .OR. IFAIL.GT.4) THEN
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Eigenvalues’
WRITE (NOUT, *)
WRITE (NOUT,99998) (E(J),J=1,M)
WRITE (NOUT, *)
WRITE (NOUT,99997) ' Test Statistic = ’, STAT(2)
WRITE (NOUT,99997) ' df = ’, STAT(3)
WRITE (NOUT,99997) ’ Significance level = r, STAT(4)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Residuals’
WRITE (NOUT, *)
L =1
DO 80 I = 1, NVAR - 1
WRITE (NOUT,99999) (RES(J),J=L,L+I-1)
L=L+1I
CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,*) '’ Loadings, Communalities and PSI’
WRITE (NOUT, *)
DO 100 I = 1, NVAR
WRITE (NOUT,99999) (FL(I,J),J=1,NFAC), COM(I), PSI(I)
CONTINUE
END IF
END IF
STOP
FORMAT (2X,9F8.3)

FORMAT (2X,6el2.4)
FORMAT (A,F6.3)
END
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9.2. Program Data

GO3CAF Example Program Data
¢’ 'u’ 211 9 9 3
1.000 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1.000 0.479 0.506 0.418 0.462 0.547 0.283 0.645
0.395 0.479 1.000 0.355 0.270 0.254 0.452 0.219 0.504
0.471 0.506 0.355 1.000 0.691 0.791 0.443 0.285 0.505
0.346 0.418 0.270 0.691 1.000 0.679 0.383 0.149 0.409
0.426 0.462 0.254 0.791 0.679 1.000 0.372 0.314 0.472
0.576 0.547 0.452 0.443 0.383 0.372 1.000 0.385 0.680

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.000 0.470
0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1.000
1 1 1 1 1 1 1 1 1

1 -150025

9.3. Program Results
GO3CAF Example Program Results

Eigenvalues

0.1597E+02 0.4358E+01 0.1847E+01 0.1156E+01 0.1119E+01 0.1027E+01
0.9257E+00 0.8951E+00 0.8771E+00

Test Statistic = 7,149
df = 12.000
Significance level = 0.848

Residuals

0.000
-0.013 0.022
0.011 -0.005 0.023
-0.010 -0.019 -0.016 0.003
-0.005 0.011 -0.012 -0.001 -0.001
0.015 -0.022 -0.011 0.002 0.029 -0.012
-0.001 -0.011 0.013 0.005 -0.006 -0.001 0.003
-0.006 0.010 -0.005 -0.011 0.002 0.007 0.003 -0.001

Loadings, Communalities and PSI

0.664 -0.321 0.074 0.550 0.450
0.689 -0.247 -0.193 0.573 0.427
0.493 -0.302 -0.222 0.383 0.617
0.837 0.292 -0.035 0.788 0.212
0.705 0.315 -0.153 0.619 0.381
0.819 0.377 0.105 0.823 0.177
0.661 -0.396 -0.078 0.600 0.400
0.458 -0.296 0.491 0.538 0.462
0.766 -0.427 -0.012 0.769 0.231

If the input value of IOP(2) is changed from —1 to 1 the following results are obtained.

GO3CAF Example Program Results

Iterations performed = 0, function evaluations = 1
Criterion = 0.863576E-01
Variable Standardized
Communalities
1 0.5755
2 0.5863
3 0.4344
4 0.7496
5 0.6203
6 0.7329
7 0.6061
8 0.4053
9 0.7104
Iterations performed = 1, function evaluations = 3
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Criterion =

0.360320E-01

Variable Standardized
Communalities
1 0.5517
2 0.5800
3 0.3936
4 0.7926
5 0.6140
6 0.8254
7 0.6052
8 0.5076
9 0.7569
Iterations performed = 2,
Criterion = 0.350210E-01
Variable Standardized
Communalities
1 0.5496
2 0.5731
3 0.3838
4 0.7875
5 0.6200
6 0.8238
7 0.6006
8 0.5349
9 0.7697
Iterations performed = 3,
Criterion = 0.350173E-01
Variable Standardized
Communalities
1 0.5495
2 0.5729
3 0.3835
4 0.7877
5 0.6195
6 0.8231
7 0.6005
8 0.5384
9 0.7691
Eigenvalues
0.1597E+02 0.4358E+01 0.1847E+01 O.
0.9257E+00 0.8951E+00 0.8771E+4+00
Test Statistic = 7.149
df = 12.000
Significance level = 0.848
Residuals
0.000
-0.013 0.022
0.011 -0.005 0.023
-0.010 -0.019 -0.016 0.003
-0.005 0.011 -0.012 -0.001 -0.001
0.015 -0.022 -0.011 0.002 0.029
-0.001 -0.011 0.013 0.005 -0.006
-0.006 0.010 -0.005 -0.011 0.002
Loadings, Communalities and PSI
0.664 -0.321 0.074 0.550 0.450
0.689 -0.247 -0.193 0.573 0.427
0.493 -0.302 -0.222 0.383 0.617
0.837 0.292 -0.035 0.788 0.212
0.705 0.315 -0.153 0.619 0.381
0.819 0.377 0.105 0.823 0.177
0.661 -0.396 -0.078 0.600 0.400
0.458 -0.296 0.491 0.538 0.462
0.766 —-0.427 -0.012 0.769 0.231

function evaluations =

function evaluations =

1156E+01

-0.012
-0.001
0.007

GO3CAF

0.1119E+01 0.1027E+01

0.003
0.003

-0.001
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GO3CCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3CCF computes factor score coefficients from the result of fitting a factor analysis model by
maximum likelihood as performed by GO3CAF.

2. Specification
SUBROUTINE GO3CCF (METHOD, ROTATE, NVAR, NFAC, FL, LDFL, PSI,

1 E, R, LDR, FS, LDFS, WK, IFAIL)

INTEGER NVAR, NFAC, LDFL, LDR, LDFS, IFAIL

real FL(LDFL,NFAC), PSI(NVAR), E(NVAR), R(LDR, *),
1 FS(LDFS,NFAC), WK(NVAR)

CHARACTER~* 1 METHOD, ROTATE

3. Description

A factor analysis model aims to account for the covariances among p variables, observed on n
individuals, in terms of a smaller number, &, of unobserved variables or factors. The values of the
factors for an individual are known as factor scores. GO3CAF fits the factor analysis model by
maximum likelihood and returns the estimated factor loading matrix, A, and the diagonal matrix
of variances of the unique components, ¥. To obtain estimates of the factors a p by k matrix of
factor score coefficients, @, is formed. The estimated vector of factor scores, f, is then given by:
f=x"o,
where x is the vector of observed variables for an individual.
There are two commonly used methods of obtaining factor score coefficients.
The regression method:
® = ¥'lAU+ATY I A)
and Bartlett’s method:
¢ =AY A
See Lawley and Maxwell [1] for details of both methods. In the regression method as given

above, it is assumed that the factors are not correlated and have unit variance; this is true for
models fitted by GO3CAF. Further, for models fitted by GO3CAF,

ATYA=6 -1,
where 6 is the diagonal matrix of eigenvalues of the matrix S*, as described in GO3CAF.

The factors may be orthogonally rotated using an orthogonal rotation matrix, R, as computed by
GO3BAF. The factor scores for the rotated matrix are then given by AR.

4. References

[1] LAWLEY, D.N. and MAXWELL, A.E.
Factor Analysis as a Statistical Method.
Butterworths, (2nd Edition) 1971.

5. Parameters
1:  METHOD - CHARACTER*1. Input
On entry: indicates which method is to be used to compute the factor score coefficients.
If METHOD = 'R’ then the regression method is used.
If METHOD = 'B, then Bartlett’s method is used.
Constraint: METHOD = 'B' or 'R".
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2:

10:

11:

12:

ROTATE - CHARACTER*1. Input
On entry: indicates whether a rotation is to be applied.

If ROTATE = 'R, then a rotation will be applied to the coefficients and the rotation matrix,
R, must be given in R.

If ROTATE = 'U', then no rotation is applied.
Constraint: ROTATE = R' or 'U"

NVAR - INTEGER. Input
On entry: the number of observed variables in the factor analysis, p.
Constraint: NVAR 2 NFAC.

NFAC - INTEGER. Input
On entry: the number of factors in the factor analysis, k.
Constraint: NFAC 2 1.

FL(LDFL,NFAC) - real array. Input
On entry: the matrix of unrotated factor loadings, A, as returned by GO3CAF.

LDFL - INTEGER. Input

On entry: the first dimension of the array FL as declared in the (sub)program from which
GO3CCF is called.

Constraint: LDFL > NVAR.

PSI(NVAR) - real array. Input
On entry: the diagonal elements of ¥, as returned by GO3CAF.
Constraint. PSI(i/) > 0.0, fori = 1,2...p.

E(NVAR) - real array. Input
On entry: the eigenvalues of the matrix S*, as retuned by GO3CAF.
Constraint: E(/) > 1.0, fori = 1,2...p.

R(LDR*) - real array. Input

Note: the second dimension of the array R must be at least 1 if ROTATE = 'U' and at least
NFAC if ROTATE = 'R".

Onentry: if ROTATE = 'R, then R must contain the orthogonal rotation matrix, R, as
returned by GO3BAF. If ROTATE = 'U', then R need not be set.

LDR - INTEGER. Input

On entry: the first dimension of the array R as declared in the (sub)program from which
GO3CCEF is called.

Constraint: if ROTATE = 'R', LDR = NFAC.

FS(LDFS,NFAC) - real array. Output

Onexit: the matrix of factor score coefficients, @. FS(ij) contains the factor score
coefficient for the jth factor and the ith observed variable, for i = 1L2...p;j = 1L2...k.

LDFS - INTEGER. Input

On entry: the first dimension of the array FS as declared in the (sub)program from which
GO3CCF is called.

Constraint: LDFS =2 NVAR.
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13:

14:

9.1.

WK (NVAR) — real array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

On entry, NFAC < 1,

or NVAR < NFAC,

or LDFL < NVAR,

or LDFS < NVAR,

or ROTATE = R' and LDR < NFAC,

or METHOD = R' or ‘B,

or ROTATE # R'or 'U'.
IFAIL = 2

On entry, a value of PSI < 0.0,

or avalue of E £ 1.0.
Accuracy

Accuracy will depend on the accuracy requested when computing the estimated factor loadings
using GO3CAF.

Further Comments

To compute the factor scores using the factor score coefficients the values for the observed
variables first need to be standardized by subtracting the sample means and, if the factor analysis
is based upon a correlation matrix, dividing by the sample standard deviations. This may be
performed using GO3ZAF. The standardized variables are then post-multiplied by the factor
score coefficients. This may be performed using routines from Chapter F06, for example
FO6YAF.

If principal component analysis is required the routine GO3AAF computes the principal
component scores directly. Hence, the factor score coefficients are not needed.

Example

The example is taken from Lawley and Maxwell [1]. The correlation matrix for 220 observations
on six school subjects is input and a factor analysis model with two factors fitted using GO3CAF.
The factor score coefficients are computed using the regression method.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3CCF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX, LWK
PARAMETER (NMAX=20, MMAX=10, LWK=400)
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* .. Local Scalars ..
INTEGER I, IFAIL, J, M, N, NFAC, NVAR
CHARACTER MATRIX, METHOD, WEIGHT

* .. Local Arrays ..
real COM(MMAX), E(MMAX), FL(MMAX,MMAX),

FS(MMAX,MMAX),

+ PSI(MMAX), R(MMAX, MMAX), STAT(4), WK(LWK),
+ WT (NMAX), X (NMAX, MMAX)
INTEGER IOP(5), ISX(MMAX), IWK(4*MMAX+2)
* .. External Subroutines ..
EXTERNAL GO3CAF, GO3CCF
* .. Executable Statements ..
WRITE (NOUT,*) ‘GO3CCF Example Program Results’
* Skip headings in data file

READ (NIN, *)
READ (NIN,*) MATRIX, WEIGHT, N, M, NVAR, NFAC
IF (M.LE.MMAX .AND. (MATRIX.EQ.’C’ .OR. MATRIX.EQ.’c’ .OR. N.LE.
+ NMAX)) THEN
IF (MATRIX.EQ.’C’ .OR. MATRIX.EQ.’c’) THEN
DO 20 I =1, M
READ (NIN,*) (X(I,J),J=1,M)
20 CONTINUE
ELSE
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M), WT(I)
40 CONTINUE
ELSE
DO 60 I =1, N
READ (NIN,*) (X(I,J),J=1,M)
60 CONTINUE
END IF
END IF
READ (NIN,*) (ISX(J),J=1,M)
READ (NIN,*) (IOP(J),J=1,5)
IFAIL = 1

CALL GO3CAF(MATRIX,WEIGHT,N,M,X,NMAX,NVAR,ISX,NFAC,WT,E,STAT,
+ COM, PSI, R, FL, MMAX, IOP, IWK, WK, LWK, IFAIL)

IF (IFAIL.EQ.O0 .OR. IFAIL.GT.4) THEN

WRITE (NOUT, *)

WRITE (NOUT,*) ’ Loadings, Communalities and PSI’

WRITE (NOUT, *)

DO 80 I = 1, NVAR

WRITE (NOUT, 99999) (FL(I,J),J=1,NFAC), COM(I), PSI(I)

80 CONTINUE

READ (NIN, *) METHOD

IFAIL = 0

CALL G03CCF(METHOD,’U’,NVAR,NFAC,FL,MMAX,PSI,E,R,MMAX,FS,
+ MMAX, WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Factor score coefficients’
WRITE (NOUT, *)
DO 100 I = 1, NVAR
WRITE (NOUT,99999) (FS(I,J),J=1,NFAC)
100 CONTINUE
END IF
END IF
STOP
*
99999 FORMAT (2X,4F8.3)
END
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9.2. Program Data
GO3CCF Example Program Data
6

rc’ 'y’ 220 6 2
1.000 0.439 0.410 O
0.439 1.000 0.351 0
0.410 0.351 1.000 O
0.288 0.354 0.164 1
0.329 0.320 0.190 O
0.248 0.329 0.181 0
1 1 1 1

1 -1 500 35

IRI

9.3. Program Results
GO3CCF Example Program Results

Loa

dings,

0.553
0.568
0.392
0.740
0.724
0.595

.288
.354
.164
.000
.595
.470

1

ORrOOO0OO0O

.329
.320
.190
.595
.000
.464

.248
.329
.181
.470
.464
.000

HOOOOO

Communalities and PSI

-0.
-0.
-0.

0.

0

0.

Factor score

0.193
.170
.109
.349
.299
.169

(oo NoNoNo]

-0.

-0

-0.

0
0

0.

429 0.490
288 0.406
450 0.356
273 0.623
.211 0.569
132 0.372
coefficients
392

.226

326

.337

.229

098

0.510
0.594
0.644
0.377
0.431
0.628

GO03CCF
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GO3DAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3DAF computes a test statistic for the equality of within-group covariance matrices and also
computes matrices for use in discriminant analysis.

2. Specification
SUBROUTINE GO3DAF (WEIGHT, N, M, X, LDX, ISX, NVAR, ING, NG,

1 WT, NIG, GMEAN, LDG, DET, GC, STAT, DF,
2 SIG, WK, IWK, IFAIL)

INTEGER N, M, LDX, ISX(M), NVAR, ING(N), NG, NIG(NG), LDG,
1 IWK(NG), IFAIL

real X (LDX,M), WT(*), GMEAN(LDG, NVAR), DET(NG),

1 GC( (NG+1)*NVAR* (NVAR+1)/2), STAT, DF, SIG,
2 WK (N* (NVAR+1) )

CHARACTER*1 WEIGHT

3. Description
Let a sample of n observations on p variables come from n, groups with n; observations in the
jth group and Sn ; = n.If the data is assumed to follow a multivariate Normal distribution with
the variance-covariance matrix of the jth group ZX;, then to test for equality of the
variance-covariance matrices between groups, thatis X, = %, = ... = Z,,' = %, the following
likelihood-ratio test statistic, G, can be used;

G C{(n—ng)logISI—z (nj—l)logISjI},
=1

where

2 n
C=l—2p +3p—12'.‘ 1 1 ,
6(p+1)(n,~1) \i7 (n;-1) (n—ny)
and §; are the within-group variance-covariance matrices and S is the pooled variance-covariance
matrix given by
=l
(n—n,)
For large n, G is approximately distributed as a x? variable with 4p(p+1)(n,—1) degrees of
freedom, see Morrison [4] for further comments. If weights are used, then § and Sj are the
weighted pooled and within-group variance-covariance matrices and » is the effective number of
observations, that is the sum of the weights.
Instead of calculating the within group variance-covariance matrices and then computing their
determinants in order to calculate the test statistic, GO3DAF uses a OR decomposition. The group
means are subtracted from the data and then for each group a QR decomposition is computed to
give an upper triangular matrix R;. This matrix can be scaled to give a matrix R; such that

S; =R jTR j- The pooled R matrix is then computed from the R; matrices. The values of |S| and
the |S;| can then be calculated from the diagonal elements of R and the R;.

This approach means that the Mahalanobis squared distances for a vector observation x can be
computed as z'z, where R;z = (x—%;), X; being the vector of means of the jth group. These
distances can be calculated by GO3DBF. The distances are used in discriminant analysis and
GO3DCF uses the results of GO3DAF to perform several different types of discriminant analysis.

S =
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The differences between the discriminant methods are, in part, due to whether or not the
within-group variance-covariance matrices are equal.

4. References

[1] AITCHISON, J. and DUNSMORE, ILR.
Statistical Prediction Analysis.
Cambridge, 1975.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics.
Griffin, Vol. 3, 1976.

[3] KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.

[4] MORRISON, DF.
Multivariate Statistical Methods.
McGraw-Hill, 1967.

5. Parameters

1:  WEIGHT - CHARACTER*1. Input
On entry: indicates if weights are to be used.
If WEIGHT = 'U' (Unweighted), no weights are used.
If WEIGHT = 'W' (Weighted), weights are to be used and must be supplied in WT.
Constraint: WEIGHT = "U' or 'W'.

2: N - INTEGER. Input
On entry: the number of observations, n.
Constraint: N 2 1.

3: M - INTEGER. Input
On entry: the number of variables in the data array X.
Constraint: M 2 NVAR.

4 X(LDXM) — real array. Input
Onentry: X(k,l) must contain the kth observation for the /th variable, for k = 1,2,...,n;
l=12,.M.

5:  LDX - INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3DAF is called.

Constraint: LDX 2 N.

6: ISX(M) — INTEGER array. Input

Onentry: ISX (1) indicates whether or not the /th variable in X is to be included in the
variance-covariance matrices.

If ISX (/) > O the /th variable is included, for / = 1,2,...,.M; otherwise it is not referenced,
Constraint: ISX(I) > 0 for NVAR values of /.

7:  NVAR - INTEGER. Input
On entry: the number of variables in the variance-covariance matrices, p.
Constraint: NVAR 2 1,
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10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

ING(N) — INTEGER array. Input
On entry: ING (k) indicates to which group the kth observation belongs, for k = 1,2,...,n.

Constraint: 1 < ING(k) S NG for k = 1,2,...,n and the values of ING must be such that
each group has at least NVAR members.

NG — INTEGER. Input
On entry: the number of groups, n,.
Constraint: NG 2 2.

WT(*) — real array. Input

On entry: if WEIGHT = 'W' the first n elements of WT must contain the weights to be used
in the analysis and the effective number of observations for a group is the sum of the
weights of the observations in that group. If WT(k)=0.0 the kth observation is excluded
from the calculations.

If WEIGHT = 'U', WT is not referenced and the effective number of observations for a
group is the number of observations in that group.

Constraint: if WEIGHT = 'W', WT(k) 2 0.0 for k = 1,2,...,n and the effective number of
observations for each group must be greater than 1.

NIG(NG) — INTEGER array. Output
On exit: NIG(j) contains the number of observations in the jth group, for j = 1,2,...,n,.

GMEAN(LDG,NVAR) - real array. Output

On exit: the jth row of GMEAN contains the means of the p selected variables for the jth
group, forj = 1,2,...,n,.

LDG - INTEGER. Input

On entry: the first dimension of the array GMEAN as declared in the (sub)program from
which GO3DAF is called.

Constraint: LDG 2 NG.

DET(NG) - real array. Output
On exit: the logarithm of the determinants of the within-group variance-covariance matrices.

GC((NG+1)*NVAR*(NVAR+1)/2) — real array. Output

Onexit: the first p(p+1)/2 elements of GC contain R and the remaining n, blocks of
p(p+1)/2 elements contain the R; matrices. All are stored in packed form by columns.

STAT - real. Output
On exit: the likelihood-ratio test statistic, G.

DF — real. Output
On exit: the degrees of freedom for the distribution of G.

SIG - real. Output
On exit: the significance level for G.

WK (N*(NVAR+1)) — real array. Workspace

IWK(NG) — INTEGER array. Workspace
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21:

6.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, NVAR < 1,

or N < 1,

or NG < 2,

or M < NVAR,

or LDX < N,

or LDG < NG,

or WEIGHT # 'U' or 'W'.
IFAIL = 2

On entry, WEIGHT = 'W' and a value of WT < 0.0.

IFAIL = 3
On entry, there are not exactly NVAR elements of ISX > 0,
or a value of ING is not in the range 1 to NG,
or the effective number of observations for a group is less than 1,
or a group has less than NVAR members.
IFAIL = 4

R or one of the Rj is not of full rank.

Accuracy

The accuracy is dependent on the accuracy of the computation of the QR decomposition. See
FO1QCEF for further details.

Further Comments
The time will be approximately proportional to np2.

Example

The data, taken from Aitchison and Dunsmore [1], is concerned with the diagnosis of three 'types'
of Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates
(mg/24hr) of two steroid metabolites. Observations for a total of 21 patients are input and the
statistics computed by GO3DAF. The printed results show that there is evidence that the
within-group variance-covariance matrices are not equal.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

*

20

40

60

GO3DAF Example Program Text
Mark 15 Release. NAG Copyright 1991.

.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER NMAX, MMAX, GPMAX

PARAMETER (NMAX=21,MMAX=2,GPMAX=3)

.. Local Scalars ..

real DF, SIG, STAT

INTEGER 1, IFAIL, J, M, N, NG, NVAR

CHARACTER WEIGHT

.. Local Arrays ..

real DET(GPMAX), GC((GPMAX+1)*MMAX*(MMAX+1)/2),
+ GMEAN ( GPMAX, MMAX) , WK (NMAX* (MMAX+1) ), WT (NMAX) ,
+ X (NMAX, MMAX)

INTEGER ING(NMAX), ISX(MMAX), IWK(GPMAX), NIG(GPMAX)
.. External Subroutines ..

EXTERNAL GO3DAF

.. Executable Statements ..
WRITE (NOUT,*) ’‘GO3DAF Example Program Results’
Skip headings in data file
READ (NIN, *)
READ (NIN,*) N, M, NVAR, NG, WEIGHT
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.'W’ .OR. WEIGHT.EQ.’w’) THEN
po 201 =1, N
READ (NIN, *) (X(1,J),J=1,M), ING(I), WT(I)

CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),Jd=1,M), ING(TI)
CONTINUE
END IF
READ (NIN,*) (ISX(J),J=1,M)
IFAIL = 0
CALL GO3DAF(WEIGHT,N,M,X,NMAX,ISX,NVAR,ING,NG,WT,NIG,GMEAN,
+ GPMAX, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Group means’
WRITE (NOUT, *)
DO 60 I = 1, NG
WRITE (NOUT,99999) (GMEAN(I,J),J=1,NVAR)
CONTINUE

WRITE (NOUT, *)
WRITE (NOUT,*) '’ LOG of determinants’
WRITE (NOUT, *)
WRITE (NOUT,99999) (DET(J),J=1,NG)
WRITE (NOUT, *)
WRITE (NOUT, 99998) ’ STAT ', STAT
WRITE (NOUT, 99998) ’ DF r, DF
WRITE (NOUT, 99998) ' SIG r, SIG
END IF
STOP

99999 FORMAT (1X,3F10.4)
99998 FORMAT (1X,A,F7.4)

[NP2136/15]
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9.2. Program Data

GO3DAF Example Program Data
21 2 2 3 'y’
.1314 2.4596
.0986 0.2624
.6419 ~2.3026
.3350 -3.2189
.4110 0.0953
.6419 -0.9163
.1163 0.0000
.3350 -1.6094
.3610 -0.5108
.0541 0.1823
.2083 -0.5108
.7344 1.2809
.0412 0.4700
.8718 -0.9163
.7405 -0.9163
.6101 0.4700
.3224 1.8563
.2192 2.0669
.2618 1.1314
.9853 0.9163
.7600 2.0281
1

FRNWNNOMNOMNEENOMNMNNNNRBNORROR R
WWWWWNNNMNNNOONNNNNDNNRRRERRREP

9.3. Program Results
GO3DAF Example Program Results
Group means
1.0433 -0.6034
2.0073 -0.2060
2.7097 1.5998
LOG of determinants

-0.8273 -3.0460 -2.2877

STAT = 19.2410
DF = 6.0000
SIG = 0.0038
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GO3DBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3DBF computes Mahalanobis squared distances for group or pooled variance-covariance
matrices. It is intended for use after GO3DAF.

2. Specification
SUBROUTINE GO3DBF (EQUAL, MODE, NVAR, NG, GMEAN, LDG, GC,

1 NOBS, M, ISX, X, LDX, D, LDD, WK, IFAIL)
INTEGER NVAR, NG, LDG, NOBS, M, ISX(*), LDX, LDD, IFAIL
real GMEAN (LDG, NVAR), GC( (NG+1)*NVAR*(NVAR+1)/2),

1 X(LDX, *), D(LDD,NG), WK(2*NVAR)

CHARACTER*1 EQUAL, MODE

3. Description

Consider p variables observed on n, populations or groups. Let X; be the sample mean and S; the
within-group variance-covariance matrix for the jth group and let x, be the kth sample point in a
data set. A measure of the distance of the point from the jth population or group is given by the
Mahalanobis distance, D :

D} = (x,—X))78;" (x,=%)).
If the pooled estimated of the variance-covariance matrix § is used rather than the within-group
variance-covariance matrices, then the distance is:

D} = (x,—%)787 (x,~%)).
Instead of using the variance-covariance matrices S and S;, GO3DBF uses the upper triangular
matrices R and R; supplied by GO3DAF such that § = R™R and S; = R]R,. D}, can then be
calculated as z”z where R 2= (x,=X;) or Rz = (x,—X;) as appropriate.
A particular case is when the distance between the group or population means is to be estimated.
The Mahalanobis distance between the ith and jth groups is:

2 _ (= _=\Tg-1¢z _=

D; = (x;-%;)"S; (X;=%;)
or

D} = (%,-%)787 (X,-%)).
Note: D2 = 0 and that in the case when the pooled variance-covariance matrix is used D} = D}
so in this case only the lower triangular values of D;, i > j, are computed.

4. References

[1] AITCHISON, J. and DUNSMORE, LR.
Statistical Prediction Analysis.
Cambridge, 1975.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics.
Griffin, Vol. 3, 1976.

[31 KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.
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5. Parameters
1:  EQUAL — CHARACTER*1. Input

Onentry: indicates whether or not the within-group variance-covariance matrices are
assumed to be equal and the pooled variance-covariance matrix used.

If EQUAL = 'E' the within-group variance-covariance matrices are assumed equal and the
matrix R stored in the first p(p+1)/2 elements of GC is used.

If EQUAL = 'U’ the within-group variance-covariance matrices are assumed to be unequal
and the matrices R pforj=12,.n ¢» Stored in the remainder of GC are used.

Constraint: EQUAL = 'E' or 'U".

2:  MODE - CHARACTER*1. Input

On entry: indicates whether distances from sample points are to be calculated or distances
between the group means.

If MODE = 'S’ the distances between the sample points given in X and the group means are
calculated.

If MODE = 'M' the distances between the group means will be calculated.
Constraint: MODE = 'M' or 'S'.

3:  NVAR - INTEGER. Input
Onentry: the number of variables, p, in the variance-covariance matrices as specified to
GO3DAF.

Constraint: NVAR 2 1.

4 NG - INTEGER. Input
On entry: the number of groups, n,.
Constraint: NG 2 2.

5:  GMEAN(LDG,NVAR) - real array. Input

On entry: the jth row of GMEAN contains the means of the p selected variables for the Jth
group, for j = 1,2,...,n,. These are returned by GO3DAF.

6: LDG - INTEGER. Input
On entry: the first dimension of the array GMEAN as declared in the (sub)program from
which GO3DBEF is called.

Constraint.: LDG 2 NG.

7 GC((NG+1)*NVAR*(NVAR+1)/2) — real array. Input

On entry: the first p(p+1)/2 elements of GC should contain the upper triangular matrix R
and the next n, blocks of p(p+1)/2 elements should contain the upper triangular matrices
R;. All matrices must be stored packed by column. These matrices are returned by
GO3DAF. If EQUAL = 'E' only the first p(p+1)/2 elements are referenced, if
EQUAL = U’ only the elements p(p+1)/2 + 1 to (ng+1)p(p+1)/2 are referenced.

Constraints: if EQUAL = 'E' the diagonal elements of R # 0.0,
if EQUAL = 'U’ the diagonal elements of the R ; # 0.0, forj = 1,2,.,NG.

8: NOBS - INTEGER. Input

Onentry: if MODE = 'S' the number of sample points in X for which distances are to be
calculated. If MODE = 'M', NOBS is not referenced.

Constraint. if MODE = 'S', NOBS 2 1.
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9: M - INTEGER. Input

On entry: if MODE = 'S' the number of variables in the data array X. If MODE = ‘M, then
M is not referenced.

Constraint; if MODE = 'S', M 2 NVAR.

10: ISX(*) — INTEGER array. Input
Note: the dimension of the array ISX must be at least max(1,M).

On entry: if MODE = 'S', ISX(!) indicates if the I/th variable in X is to be included in the
distance calculations. If ISX(/) > O the /th variable is included, for 1 =12,...M;
otherwise the /th variable is not referenced.

If MODE = 'M, then ISX is not referenced.
Constraint: if MODE = 'S', ISX(I) > 0 for NVAR values of /.

11: X(LDX,*) — real array. Input
Note: the second dimension of the array X must be at least max(1,M).

On entry: if MODE = 'S' the kth row of X must contain x,. That is X (k,/) must contain the
kth sample value for the /th variable for k = 1,2,..,NOBS; ! = 1,2,...,.M. Otherwise X is not
referenced.

122 LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3DBEF is called.

Constraint. if MODE = 'S', LDX = NOBS.

13: D(LDD,NG) - real array. Output
On exit: the squared distances.
If MODE = 'S', D(k,j) contains the squared distance of the kth sample point from the jth
group mean, D,fj, for k = 1,2,.,NOBS; j = 1,2,...,n,.
If MODE = 'M' and EQUAL = 'U’, D(i,j) contains the squared distance between the ith
mean and the jth mean, D;, fori = 1,2,.,n,;j = 1L,2,..,i=Li+l,...n,. The elements D(i,i)
are not referenced for i = 1,2,...,n,.

If MODE = 'M and EQUAL = 'E', D(i,j) contains the squared distance between the ith

. 2 P P . . _
mean and the jth mean, D, fori = 1,2,..,n,;j = 1,2,...,i-1. Since D; = D the elements

D(i,j) are not referenced, for i = 1,2,...,n,; j = i,i+l,...n,.

14: LDD — INTEGER. Input

On entry: the first dimension of the array D as declared in the (sub)program from which
GO3DBF is called.

Constraint; if MODE = 'S', LDD 2 NOBS; if MODE = 'M', LDD 2 NG.

15: WK(2*NVAR) - real array. Workspace

16: IFAIL — INTEGER. Input/ Output

Onentry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6.

9.1.

Page 4

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, NVAR < 1,

or NG < 2,

or LDG < NG,

or MODE = 'S' and NOBS < 1,

or MODE = 'S'and M < NVAR,

or MODE = 'S' and LDX < NOBS,

or MODE = 'S'and LDD < NOBS,

or MODE = 'M' and LDD < NG,

or EQUAL = E' or 'U',

or MODE # 'M or 'S".
IFAIL = 2

On entry, MODE = 'S’ and the number of variables indicated by ISX is not equal

to NVAR,

or EQUAL = 'E' and a diagonal element of R is zero,

or EQUAL = 'U’' and a diagonal element of R ; for some j is zero.
Accuracy

The accuracy will depend upon the accuracy of the input R or R ; matrices.

Further Comments
If the distances are to be used for discrimination, see also GO3DCF.

Example

The data, taken from Aitchison and Dunsmore [1], is concerned with the diagnosis of three ‘types'
of Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates
(mg/24hr) of two steroid metabolites. Observations for a total of 21 patients are input and the
group means and R matrices are computed by GO3DAF. A further six observations of unknown
type are input, and the distances from the group means of the 21 patients of known type are
computed under the assumption that the within-group variance-covariance matrices are not equal.
These results are printed and indicate that the first four are close to one of the groups while
observations 5 and 6 are some distance from any group.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3DBF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX, GPMAX
PARAMETER (NMAX=21, MMAX=2, GPMAX=3)
* .. Local Scalars ..
real DF, SIG, STAT
INTEGER I, IFAIL, J, M, N, NG, NOBS, NVAR
CHARACTER EQUAL, WEIGHT

[NP2136/15)



GO3 — Multivariate Methods GO3DBF

real
+
+
INT

EXT

WRI
* Ski

Local Arrays

D (NMAX, GPMAX), DET(GPMAX),
GC((GPMAX+1)*MMAX*(MMAX+1)/2), GMEAN ( GPMAX, MMAX) ,
WK (NMAX* (MMAX+1)), WT(NMAX), X (NMAX, MMAX)

EGER ING(NMAX), ISX(MMAX), IWK(GPMAX), NIG(GPMAX)

External Subroutines ..

ERNAL GO3DAF, GO3DBF

. Executable Statements

TE (NOUT,*) ’'GO3DBF Example Program Results’
p headings in data file

READ (NIN, *)
READ (NIN,*) N, M, NVAR, NG, WEIGHT

IF

20

40

60

80

(N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 20 I =1, N
READ (NIN,*) (X(I,J),J=1,M), ING(I), WT(I)
CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M), ING(I)
CONTINUE
END IF
READ (NIN,*) (ISX(J),Jd=1,M)
IFAIL = 0

CALL GO3DAF (WEIGHT,N,M, X, NMAX, ISX, NVAR, ING, NG, WT, NIG, GMEAN,
GPMAX, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)

READ (NIN,*) NOBS, EQUAL
IF (NOBS.LE.NMAX) THEN
DO 60 I = 1, NOBS
READ (NIN,*) (X(I,J),J=1,M)
CONTINUE
IFAIL = 0

CALL GO3DBF(EQUAL,’Sample points’,NVAR,NG, GMEAN, GPMAX, GC,
NOBS, M, ISX, X, NMAX,D, NMAX, WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Obs Distances’
WRITE (NOUT, *)
DO 80 I = 1, NOBS
WRITE (NOUT,99999) I, (D(I,J),Jd=1,NG)
CONTINUE
END IF

END IF
STOP

*

99999 FORMAT (1X,I3,3F10.3)

END

9.2. Program Data
GO3DBF Example Program Data

21 2 2
1.1314
1.0986
0.6419
1.3350
1.4110
0.6419
2.1163
1.3350
1.3610
2.0541
2.2083
2.7344
2.0412
1.8718
1.7405

[NP2136/15)

3 vy’
2.4596
0.2624

-2.3026
-3.2189
0.0953
-0.9163
0.0000
-1.6094
-0.5108
0.1823
-0.5108
1.2809
0.4700
-0.9163
-0.9163
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2.6101
2.3224
2.2192
2.2618
3.9853
2.7600
1

6 "U’
1.6292
2.5572
2.5649
0.9555
3.4012
3.0204

.4700
.8563
.0669
.1314
.9163
.0281
1

NORFRNMNRBO

-0.9163

1.6094
-0.2231
-2.3026
-2.3026
-0.2231

9.3. Program Results

GO3DBF Example Program Results

Obs

G WM K

Distances

3.339 0.752

20.777 5.656
21.363 4.841
0.718 6.280

55.000 88.860
36.170 15.785

WWWWwwN

50.
.060
.498
.732
.785
.749

928
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GO3DCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO3DCF allocates observations to groups according to selected rules. It is intended for use after
GO3DAF.

2. Specification
SUBROUTINE GO3DCF (TYPE, EQUAL, PRIORS, NVAR, NG, NIG, GMEAN,

1 LDG, GC, DET, NOBS, M, ISX, X, LDX, PRIOR,
2 P, LDP, IAG, ATIQ, ATI, WK, IFAIL)

INTEGER NVAR, NG, NIG(NG), LDG, NOBS, M, ISX(M), LDX, LDP,
1 IAG(NOBS), IFAIL

real GMEAN (LDG, NVAR), GC( (NG+1)*NVAR* (NVAR+1)/2),
1 DET (NG), X(LDX,M), PRIOR(NG), P(LDP,NG),
2 ATI(LDP,*), WK(2*NVAR)

LOGICAL ATIQ

CHARACTER*1 TYPE, EQUAL, PRIORS

3. Description

Discriminant analysis is concerned with the allocation of observations to groups using
information from other observations whose group membership is known, X, ; these are called the
training set. Consider p variables observed on n, populations or groups. Let X; be the sample
mean and §; the within-group variance-covariance matrix for the jth group; these are calculated
from a training set of n observations with n; observations in the jth group, and let x, be the kth
observation from the set of observations to be allocated to the n, groups. The observation can be
allocated to a group according to a selected rule. The allocation rule or discriminant function will
be based on the distance of the observation from an estimate of the location of the groups, usually
the group means. A measure of the distance of the observation from the jth group mean is given
by the Mahalanobis distance, D7

Dy = (x¢=%) S} (x,—%)). 1
If the pooled estimate of the variance-covariance matrix S is used rather than the within-group
variance-covariance matrices, then the distance is:

ij = (xk"fj)rs_l (x¢=X;). (2)
Instead of using the variance-covariance matrices S and S;, GO3DCF uses the upper triangular
matrices R and R, supplied by GO3DAF such that § = R'R and §; = Rj/R;. D;; can then be
calculated as 2z where R;z = (x,—%;) or Rz = (x,—X;) as appropriate.

In addition to the distances a set of prior probabilities of group membership, r;, forj = 1,2,...,n,,
may be used, with Zn:j = 1. The prior probabilities reflect the users view as to the likelihood of
the observations coming from the different groups. Two common cases for prior probabilities are
m =M, = .. =7,,thatis equal prior probabilities, and #; = n;/n, for j = 1,2,..,n, that is
prior probabilities proportional to the number of observations in the groups in the training set.
GO3DCEF uses one of four allocation rules. In all four rules the p variables are assumed to follow
a multivariate Normal distribution with mean u; and variance-covariance matrix Z; if the
observation comes from the jth group. The different rules depend on whether or not the
within-group variance-covariance matrices are assumed equal, ie. £, = X, = .. = 2,,‘, and
whether a predictive or estimative approach is used. If p(x.|y;,Z;) is the probability of
observing the observation x, from group j, then the posterior probability of belonging to group j
is:

p(jlxk»#j’zj) oc P(x,,lllj,zj)nj. 3)
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In the estimative approach the parameters 4; and Z; in (3) are replaced by their estimates
calculated from X,. In the predictive approach a non-informative prior distribution is used for the
parameters and a posterior distribution for the parameters, p(;,Z;|X,), is found. A predictive
distribution is then obtained by integrating p(jl|x,.u;,Z;)p(4;,Z;|X) over the parameter space.
This predictive distribution then replaces p(x|;,Z;) in (3). See Aitchison and Dunsmore [1],
Aitchison et al. [2] and Moran and Murphy [5] for further details.

The observation is allocated to the group with the lighest posterior probability. Denoting the
posterior probabilities, p(j|x,,u;,Z;), by q;, the four allocation rules are:

(i) Estimative with equal variance-covariance matrices — Linear Discrimination.

logg; o< —4D7 + logr,

(ii) Estimative with unequal variance-covariance matrices — Quadratic Discrimination.
logg; o —4D; + logm; — jlog|s,|

(iii) Predictive with equal variance-covariance matrices
gt e ((n+1)/n))P?{1+[n;/ ((n=n,) (n+1))]D} """

(iv) Predictive with unequal variance-covariance matrices

I'}(n;=p))

I'(3n j)

In the above the appropriate value of ij from (1) or (2) is used. The values of the q; are
standardized so that,

>4q ;=L

=
Moran and Murphy [5] show the similarity between the predictive methods and methods based
upon likelihood ratio tests.
In addition to allocating the observation to a group GO3DCF computes an atypicality index,
I;(x;). This represents the probability of obtaining an observation more typical of group j than
the observed x,, see Aitchison and Dunsmore [1] and Aitchison et al. [2]. The atypicality index
is computed as:

I;(x,) = P(Bsz : jp}(n;—d))
where P(B<f : a,b) is the lower tail probability from a beta distribution where for unequal
within-group variance-covariance matrices,

z = D}/(DE+(n}=1)/n),
and for equal within-group variance-covariance matrices,

z = DA/ (DE+(n—n,)(n;=1)/n;).
If I;(x,) is close to 1 for all groups it indicates that the observation may come from a grouping

not represented in the training set. Moran and Murphy [5] provide a frequentist interpretation of
I.(x¢).
J

g;t o C{((n}=1)/n;)|S;13**{1+(n;/ (n}~1))DZ}""* where C =
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5. Parameters
1:  TYPE — CHARACTER*1. Input
On entry: whether the estimative or predictive approach is used.
If TYPE = 'E' the estimative approach is used.
If TYPE = 'P' the predictive approach is used.
Constraint: TYPE = 'E' or 'P'.

2 EQUAL — CHARACTER*I. Input

Onentry: indicates whether or not the within-group variance-covariance matrices are
assumed to be equal and the pooled variance-covariance matrix used.

If EQUAL = 'E' the within-group variance-covariance matrices are assumed equal and the
matrix R stored in the first p(p+1)/2 elements of GC is used.

If EQUAL = 'U' the within-group variance-covariance matrices are assumed to be unequal
and the matrices R, for i = 1,2,...,n,, stored in the remainder of GC are used.

Constraint: EQUAL = 'E' or 'U'.

3:  PRIORS — CHARACTER*1. Input
On entry: indicates the form of the prior probabilities to be used.

If PRIORS = 'E', equal prior probabilities are used.

If PRIORS = 'P', prior probabilities proportional to the group sizes in the training set, n;,
are used.

If PRIORS = T, the prior probabilities are input in PRIOR.

Constraint: PRIORS = E, T or 'P'.

4: NVAR - INTEGER. Input
On entry: the number of variables, p, in the variance-covariance matrices.
Constraint: NVAR 2 1.

5: NG - INTEGER. Input
On entry: the number of groups, n,.
Constraint: NG 2 2.

6: NIG(NG) - INTEGER array. Input
On entry: the number of observations in each group in the training set, n;.
Constraints: if EQUAL = 'E', NIG(j) > 0, forj = 1,2,...,n, and
Y NIG(j) > NG + NVAR.

=

If EQUAL = 'U', NIG(j) > NVAR, for j = 1,2,...n,.
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7:  GMEAN(LDG,NVAR) - real array. Input

On entry: the jth row of GMEAN contains the means of the p variables for the jth group, for
Jj = 12,..,n;. These are returned by GO3DAF.

8: LDG - INTEGER. Input

On entry: the first dimension of the array GMEAN as declared in the (sub)program from
which GO3DCEF is called.

Constraint: LDG 2 NG.

9:  GC((NG+1)*NVAR*(NVAR+1)/2) — real array. Input

On entry: the first p(p+1)/2 elements of GC should contain the upper triangular matrix R
and the next n, blocks of p(p+1)/2 elements should contain the upper triangular matrices
R;. All matrices must be stored packed by column. These matrices are returned by
GO3DAF. If EQUAL = E' only the first p(p+1)/2 elements are referenced, if
EQUAL = 'U' only the elements p(p+1)/2 + 1 to (n,+1)p(p+1)/2 are referenced.

Constraints: if EQUAL = 'E' the diagonal elements of R must be # 0.0,
if EQUAL = U’ the diagonal elements of the R; must be # 0.0, for
j=12,..n,.

10: DET(NG) — real array. Input
Onentry. if EQUAL = 'U' the logarithms of the determinants of the within-group
variance-covariance matrices as returned by GO3DAF. Otherwise DET is not referenced.

11: NOBS — INTEGER. Input
On entry: the number of observations in X which are to be allocated.

Constraint: NOBS 2 1.

12: M - INTEGER. Input
On entry: the number of variables in the data array X.
Constraint: M 2 NVAR.

13:  ISX(M) — INTEGER array. Input
Onentry: ISX(l) indicates if the I/th variable in X is to be included in the distance
calculations.

If ISX(I) > O the /th variable is included, for / = 1,2,...,M; otherwise the /th variable is not
referenced.

Constraint: 1ISX(I) > 0 for NVAR values of /.

14: X(LDXM) — real array. Input
On entry: X(k,l) must contain the kth observation for the /th variable, for k¥ = 1,2,...,NOBS;
1 =12,..M

15: LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3DCEF is called.

Constraint: LDX = NOBS.

Page 4 [NP2136/15]



G03 — Multivariate Methods GO3DCF

16:

17:

18:

19:

20:

21:

22:

23:

PRIOR(NG) - real array. Input/ Output
On entry: if PRIORS = T the prior probabilities for the n, groups.
Constraint: if PRIORS = T, then PRIOR(j) > 00 for j=12,.,n and

4

‘1—23 PRIOR(j)| < 10xmachine precision.

1

On exit: if PRIORS = 'P' the computed prior probabilities in proportion to group sizes for
the n, groups. If PRIORS = T the input prior probabilities will be unchanged, and if

PRIORS = 'E', PRIOR is not set.

P(LDP,NG) - real array. Output

On exit: P(k,j) contains the posterior probability p,; for allocating the kth observation to the
jth group, for k = 1,2,..,NOBS; j = 1,2,...,n,.

LDP — INTEGER. Input

On entry: the first dimension of the array P as declared in the (sub)program from which
GO3DCEF is called.

Constraint: LDP 2 NOBS.

IAG(NOBS) — INTEGER array. Output
On exit: the groups to which the observations have been allocated.

ATIQ — LOGICAL. Input

On entry: AITQ must be .TRUE. if atypicality indices are required. If ATIQ is .FALSE. the
array ATI is not set.

ATI(LDP*) — real array. Output

Note: if ATIQ is .TRUE. the second dimension of ATI must be at least NG, if ATIQ is
FALSE. the second dimension of ATI must be at least 1.

Onexit: if AITQ is .TRUE., ATI(kj) will contain the atypicality index for the kth
observation with respect to the jth group, for k = 1,2,..,NOBS; j = 1,2,...,n . If ATIQ is
JFALSE., ATI is not set.

WK (2¥*NVAR) — real array. Workspace

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, NVAR < 1,
or NG < 2,
or NOBS < 1,
or M < NVAR,
or LDG < NG,
or LDX < NOBS,
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or LDP < NOBS,

or TYPE # 'E' or 'P',

or EQUAL # E' or 'U',

or PRIORS # E', T or 'P.
IFAIL = 2

On entry, the number of variables indicated by ISX is not equal to NVAR,

or EQUAL = 'E' and NIG(j) < 0, for some j,

or EQUAL = 'E' and ZNIG(/) < NG + NVAR,

or EQUAL = 'U' and NIG(/) < NVAR for some j.
IFAIL = 3

On entry, PRIORS = T and PRIOR(j) < 0.0 for some j,

or PRIORS = T and i"PRIOR(i) is not within 10xXmachine precision of 1.

=)

IFAIL = 4

On entry, EQUAL = 'E' and a diagonal element of R is zero,

or EQUAL = U’ and a diagonal element of R; for some j is zero.
Accuracy

The accuracy of the returned posterior probabilities will depend on the accuracy of the input R or
R; matrices. The atypicality index should be accurate to four significant places.

Further Comments
The distances ij can be computed using GO3DBF if other forms of discrimination are required.

Example

The data, taken from Aitchison and Dunsmore [1], is concerned with the diagnosis of three 'types’
of Cushing’s syndrome. The variables are the logarithms of the urinary excretion rates
(mg/24hr) of two steroid metabolites. Observations for a total of 21 patients are input and the
group means and R matrices are computed by GO3DAF. A further six observations of unknown
type are input and allocations made using the predictive approach and under the assumption that
the within-group covariance matrices are not equal. The posterior probabilities of group
membership, ¢;, and the atypicality index are printed along with the allocated group. The
atypicality index shows that observations 5 and 6 do not seem to be typical of the three types
present in the initial 21 observations.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3DCF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX, GPMAX
PARAMETER (NMAX=21, MMAX=2, GPMAX=3)
* .. Local Scalars ..
real DF, SIG, STAT
INTEGER I, IFAIL, J, M, N, NG, NOBS, NVAR
CHARACTER EQUAL, TYPE, WEIGHT
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20

40

60

80

*

.. Local Arrays ..
real ATI(NMAX,GPMAX), DET(GPMAX),

+ GC( (GPMAX+1) *MMAX* (MMAX+1)/2), GMEAN(GPMAX,MMAX),
+ P (NMAX, GPMAX), PRIOR(GPMAX), WK(NMAX*(MMAX+1)),
+ WT (NMAX), X(NMAX,MMAX)
INTEGER IAG(NMAX), ING(NMAX), ISX(MMAX), IWK(GPMAX),
+ NIG(GPMAX)

.. External Subroutines ..
EXTERNAL GO3DAF, GO3DCF
.. Executable Statements ..
WRITE (NOUT,*) ’GO3DCF Example Program Results’
Skip headings in data file
READ (NIN, *)
READ (NIN,*) N, M, NVAR, NG, WEIGHT
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.’W’ .OR. WEIGHT.EQ.’w’) THEN
DO 20I =1, N
READ (NIN,*) (X(I,J),J=1,M), ING(I), WT(I)
CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M), ING(I)
CONTINUE
END IF
READ (NIN,*) (ISX(J),J=1,M)
IFAIL = 0

CALL GO3DAF(WEIGHT, N, M, X, NMAX, ISX, NVAR, ING, NG, WT, NIG, GMEAN,

+ GPMAX, DET, GC, STAT, DF, SIG, WK, IWK, IFAIL)

+

READ (NIN,*) NOBS, EQUAL, TYPE
IF (NOBS.LE.NMAX) THEN
DO 60 I = 1, NOBS
READ (NIN,*) (X(I,J),J=1,M)
CONTINUE
IFAIL = 0

CALL GO3DCF (TYPE,EQUAL,’Equal priors’, NVAR,NG,NIG,GMEAN,
GPMAX, GC, DET, NOBS, M, ISX, X, NMAX, PRIOR, P, NMAX, IAG,
.TRUE.,ATI, WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) '/ Obs Posterior Allocated’,
’ Atypicality’
WRITE (NOUT, *)
4 probabilities to group index’
WRITE (NOUT, *)
DO 80 I = 1, NOBS
WRITE (NOUT,99999) I, (P(I,J),J=1,NG), IAG(I),
(ATI(I,J),J=1,NG)
CONTINUE
END IF
END IF
STOP

99999 FORMAT (1X,2(I6,5X,3F6.3))
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9.2. Program Data

GO3DCF Example Program Data
3 'y’
2.4596
.2624
.3026
.2189
.0953
.9163
.0000
-1.
-0.
0.1823
-0.5108
1.2809
0.4700
-0.9163
-0.9163
0.4700
1.8563
2.0669
1.1314
0.9163
2.0281

21 2 2
1.1314
1.0986
0.6419
1.3350
1.4110
0.6419
2.1163
1.3350
1.3610
2.0541
2.2083
2.7344
2.0412
1.8718
1.7405
2.6101
2.3224
2.2192
2.2618
3.9853
2.7600

1

6 'U’
1.6292
2.5572
2.5649
0.9555
3.4012
3.0204

IPI

1

6094
5108

-0.9163

1.6094
-0.2231
-2.3026
-2.3026
-0.2231

9.3. Program Results

GO3DCF Example Program Results

Obs

AU WN R

[eNeNoNoNoNe]

WWWWWNNDNNNNNNMNNDNDNNDRRRERPR R R

Posterior
probabilities
.094 0.905 0.002
.005 0.168 0.827
.019 0.920 0.062
.697 0.303 0.000
.317 0.013 0.670
.032 0.366 0.601

Allocated
to group

WWEMNMDWN

Atypicality

GO3 — Multivariate Methods

index

0.596
0.952
0.954
0.207
0.991
0.981

0.254
0.836
0.797
0.860
1.000
0.978

[eNoNoNoNoNa

.975
.018
.912
.993
.984
.887

Page 8 (last)
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GO3EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GO3EAF computes a distance (dissimilarity) matrix.

Specification
SUBROUTINE GO3EAF (UPDATE, DIST, SCALE, N, M, X, LDX, ISX, S, D, IFAIL)
INTEGER N, M, LDX, ISX(M), IFAIL
real X(LDX,M), S(M), D(Nx(N-1)/2)

CHARACTER*1 UPDATE, DIST, SCALE

Description

Given n objects, a distance or dissimilarity matrix, is a symmetric matrix with zero diagonal
elements such that the ijth element represents how far apart or how dissimilar the ith and jth
objects are.

Let X be a n by p data matrix of observations of p variables on n objects then the distance
between object j and object k, d;,, can be defined as:

d; = {gD(xj,./s,,xk,./s,.)}“ ,
where x;; and x,; are the (j,i)th and (k,i)th elements of X, s, is a standardization for the ith
variable and D (u,v) is a suitable function. Three functions are provided in GO3EAF.

(a) Euclidean distance: D(u,v) = (u-v)? and & = 4.

(b) Euclidean squared distance: D(4,v) = (u-v)? and & = 1.

(c) Absolute distance (city block metric): D(u,v) = |u—v| and @ = 1.
Three standardizations are available.

(a) Standard deviation: s, = _[Y (x;~%)*/(n-1)
=l

(b) Range: s; = max(x;Xy;,...X,;) — Min(X ;X0 X,;)
(c¢) User supplied values of s;.

In addition to the above distances there are a large number of other dissimilarity measures,
particularly for dichotomous variables (see Krzanowski [2] and Everitt [1]). For the
dichotomous case these measures are simple to compute and can, if suitable scaling is used, be
combined with the distances computed by GO3EAF using the updating option.

Dissimilarity measures for variables can be based on the correlation coefficient for continuous
variables and contingency table statistics for dichotomous data, see chapters G02 and G11
repectively.

GO3EAF returns the strictly lower triangle of the distance matrix.

References

[1] EVERITT, B.
Cluster Analysis.
Heinemann, 1974.

[2] KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.
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Parameters
UPDATE - CHARACTER*1. Input
On entry: indicates whether or not an existing matrix is to be updated.

If UPDATE = U’ the matrix D is updated and distances are added to D.
If UPDATE = T the matrix D is initialized to zero before the distances are added to D.

Constraint: UPDATE = U'or T

DIST — CHARACTER*1. Input

On entry: indicates which type of distances are computed
If DIST = 'A’, absolute distances.

If DIST = 'E', Euclidean distances.

If DIST ='S', Euclidean squared distances.

Constraint: DIST ='A', 'E' or 'S'.

SCALE — CHARACTER*1. Input

On entry: indicates the standardization of the variables to be used.
If SCALE =S/, standard deviation.

If SCALE = R, range.

If SCALE = 'G', standardizations given in array S.

If SCALE = 'U’, unscaled.

Constraint: SCALE ='S', 'R', 'G' or 'U".

N - INTEGER. Input
On entry: the number of observations, ».
Constraint: N 2 2.

M - INTEGER. Input
On entry: the total number of variables in array X.
Constraint: M > 0.

X(LDXM) — real array. Input

On entry: X (i,j) must contain the value of the jth variable for the ith object, fori = 1,2,...,n;
Jj=12,.. M.

LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3EAF is called.

Constraint. LDX 2 N.

ISX(M) — INTEGER array. Input

Onentry: ISX(j) indicates whether or not the jth variable in X is to be included in the
distance computations.

If ISX(j) > O the jth variable is included, for j = 1,2,...,M; otherwise it is not referenced.
Constraint: ISX(j) > O for at least one j, j = 1,2,... M.

S(M) - real array. Input/ Output

On entry: if SCALE = 'G' and ISX(j) > 0 then S(j) must contain the scaling for variable j,
forj = 1,2,...M.

Constraint: if SCALE = 'G' and ISX(j) > 0 then S(j) > 0.0, for j = 1,2,....M.

Onexit: if SCALE = 'S' and ISX(j) > O then S(j) contains the standard deviation of the
variable in the jth column of X. If SCALE = R' and ISX(j) > O then S(j) contains the range
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of the variable in the jth column of X. If SCALE = 'U’' and ISX(j) > O then S(j) = 1.0. and
if SCALE = 'G' then S is unchanged.

10: D(N*(N-1)/2) — real array. Input/ Output

On entry: if UPDATE = 'U' then D must contain the strictly lower triangle of the distance
matrix D to be updated. D must be stored packed by rows, i.e. D((i-1) (i-2)/2+j), i > j
must contain d ;.

Constraint. if UPDATE = 'U' then D(j) 2 0.0, for j = 1,2,...,n(n-1)/2.

On exit: the strictly lower triangle of the distance matrix D stored packed by rows, i.e. d;is
contained in D( (i-1) (i=2)/2+j), i > j.

11: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, N < 2,
or LDX < N,
or M<O,
or UPDATE # T or 'U’,
or DIST # ‘A, 'E' or 'S,
or SCALE # 'S', R', 'G' or 'U'".
IFAIL = 2
On entry, ISX(j) <0 forj = 1,2,..M,
or UPDATE = 'U’ and D(j) < 0.0, for some j = 1,2,....,n(n-1)/2,
or SCALE = 'S' or 'R' and X (ij) = X(i+1,j) for i = 1,2,...,n—1, for some j with
ISX (i) > 0.
or S(j) < 0.0 for some j when SCALE = 'G' and ISX(j) > 0.

7. Accuracy
The computations are believed to be stable.

8. Further Comments
GO3ECF can be used to perform cluster analysis on the computed distance matrix.

9. Example

A data matrix of five observations and three variables is read in and a distance matrix is
calculated from variables 2 and 3 using squared Euclidean distance with no scaling. This matrix
is then printed.

[NP2478/16] Page 3



GO3EAF

9.1.

9.2.

Page 4

Program Text
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Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

* GO3EAF Example Program Text

* Mark 16 Release. NAG Copyright 1992.

* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=10,MMAX=10)

* .. Local Scalars ..

INTEGER I, IFAIL, J, LDX, M,
CHARACTER DIST, SCALE, UPDATE

* .. Local Arrays ..
real D (NMAX* (NMAX-1)/2),
INTEGER ISX(MMAX)

* .. External Subroutines ..
EXTERNAL GO3EAF

* .. Executable Statements ..

WRITE (NOUT,*) ’'GO3EAF Example Program Results’

* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N, M

IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
READ (NIN,*) UPDATE, DIST, SCALE
DO 20 J =1, N

READ (NIN,*) (X(J,I),I=1,M)
20 CONTINUE

READ (NIN,*) (ISX(I),I=1,M)
READ (NIN,*) (S(I),I=1,M)

*

Compute the distance matrix

IFAIL = 0
LDX = NMAX

X (NMAX, MMAX)

CALL GO3EAF(UPDATE,DIST,SCALE,N,M, X, LDX, ISX,S,D,IFAIL)

*

Print the distance matrix

IFAIL = 0

WRITE (NOUT, *)

WRITE (NOUT,*) ’ Distance Matrix’
WRITE (NOUT, *)

WRITE (NOUT, 99999) ' 1 2
WRITE (NOUT, *)

DO 40 I = 2, N

4’

WRITE (NOUT,99998) I, (D(J),J=(I-1)*(I-2)/2+41,I*(I-1)/2)

40 CONTINUE
END IF
STOP
*
99999 FORMAT (5X,A)
99998 FORMAT (1X,I2,2X,4(3X,F5.2))
END

Program Data
GO3EAF Example Program Data

III ISI IUI
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9.3. Program Results
GO3EAF Example Program Results
Distance Matrix
1 2 3 4
1.00
29.00 26.00

50.00 49.00 5.00
50.00 53.00 13.00 4.00

b WwWN
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GO3ECF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GO3ECF performs hierarchical cluster analysis.

Specification
SUBROUTINE GO3ECF (METHOD, N, D, ILC, IUC, CD, IORD, DORD, IWK, IFAIL)
INTEGER METHOD, N, ILC(N-1), IUC(N-1), IORD(N), IWK(2*N), IFAIL
real D(N*(N-1)/2), CD(N-1), DORD(N)

Description

Given a distance or dissimilarity matrix for n objects (see GO3EAF), cluster analysis aims to
group the n objects into a number of more or less homogeneous groups or clusters. With
agglomerative clustering methods, a hierarchical tree is produced by starting with n clusters, each
with a single object and then at each of n-1 stages, merging two clusters to form a larger cluster,
until all objects are in a single cluster. This process can may be represented by a dendrogram
(see GO3EHF).

At each stage the clusters that are nearest are merged, methods differ as to how the distance
between the new cluster and other clusters are computed. For three clusters i, jand kletn;, n;
and n, be the number of objects in each cluster and let d;, d, and d, be the distances between
the clusters. Let clusters j and k be merged to give cluster jk, then the distance from cluster i to
cluster jk, d;; can be computed in the following ways.

1. Single Link or nearest neighbour : d,, = min(d;,d,).
2. Complete Link or furthest neighbour : d;y = max(d;dy).

nj nk

3. Group average : d., = .+ d..
P BE  Gip n+n, 7 n o+ "
n; n n.n
4. Centroid : d,;, =——d, + —*—a, - It d,.

5. Median : di.jk = idu + idik - *djk'
6. Minimum variance : d,;, = {(n; + n)d; + (n; + n)dy — ndy}/(n, + nj +n,).
For further details see Everitt [1] or Krzanowski [2].

If the clusters are numbered 1,2,...,n then for convenience if clusters j and &, J < k, merge then
the new cluster will be referred to as cluster j. Information on the clustering history is given by
the values of j, k and d,, for each of the n—1 clustering steps. In order to produce a dendrogram,
the ordering of the objects such that the clusters that merge are adjacent is required. This ordering
is computed so that the first element is 1. The associated distances with this ordering are also
computed.

References

[1] EVERITT, B.
Cluster Analysis.
Heinemann, 1974,

[2] KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.
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10:

Parameters
METHOD - INTEGER. Input
On entry: indicates which clustering method is used.

If METHOD = 1, single link.

If METHOD = 2, complete link.

If METHOD = 3, group average.

If METHOD = 4, centroid.

If METHOD = 5, median.

If METHOD = 6, minimum variance.

Constraint: METHOD = 1,2,3,4,5 or 6.

N - INTEGER. Input
On entry: the number of objects, n.
Constraint: N 2 2.

D(N*(N-1)/2) — real array. Input

On entry: the strictly lower triangle of the distance matrix. D must be stored packed by rows,
i.e. D((i-1)(i-2)/24j), i > j must contain d ;.

Constraint: D(i) 2 0.0, for i = 1,2,...,n(n-1)/2.

ILC(N-1) — INTEGER array. Output

Onexit: ILC(I) contains the number, j, of the cluster merged with cluster £ (see IUC),
j < k,atsteplforl = 1,2,.,n-1.

TUC(N-1) — INTEGER array. Output

On exit: TUC(]) contains the number, , of the cluster merged with cluster j, j < k, at step
lforl = 1,2,..,n-1.

CD(N-1) — real array. Output

On exit: CD(]) contains the distance d;, between clusters j and k, j < k, merged at step /
for/ = 1,2,..,n-1.

IORD(N) — INTEGER array. Output
On exit: the objects in dendrogram order.

DORD(N) - real array. Output

On exit: the clustering distances corresponding to the order in IORD. DORD(/) contains the
distance at which cluster IORD(/) and IORD(/+1) merge, for I = 1,2,...,n—~1. DORD(n)
contains the maximum distance.

IWK (2%N) — INTEGER array. Workspace

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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9.1.

IFAIL = 1
On entry, METHOD # 1,2,3,4,5 or 6,
or N < 2.

IFAIL = 2

On entry, D(i) < 0.0 for some / = 1,2,....,n(n-1)/2.
IFAIL = 3

A true dendrogram cannot be formed because the distances at which clusters have merged
are not increasing for all steps, i.e. CD(/) < CD(/-1) for some / = 2,3,...,n-1. This can
occur for the median and centroid methods.

Accuracy

For METHOD 2 3 slight rounding errors may occur in the calculations of the updated distances.
These would not normally significantly affect the results, however there may be an effect if
distances are (almost) equal.

If at a stage, two distances d; and d);, i < kori = kandj < [, are equal then clusters k and /
will be merged rather than clusters / and ;. For single link clustering this choice will only affect
the order of the objects in the dendrogram. However for other methods the choice of &/ rather
than ij may affect the shape of the dendrogram. If either of the distances d j or d,, are affected by
rounding errors then their equality, and hence the dendrogram, may be affected.

Further Comments

The dendrogram may be formed using GO3EHF. Groupings based on the clusters formed at a
given distance can be computed using GO3EJF.

Example

Data consisting of three variables on five objects are read in. Euclidean squared distances based
on two variables are computed using GO3EAF, the objects are clustered using GO3ECF and the
dendrogram computed using GO3EHF. The dendrogram is then printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3ECF Example Program Text
* Mark 17 Revised. NAG Copyright 1995.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, MMAX, LENC
PARAMETER (NMAX=10,MMAX=10, LENC=20)
* .. Local Scalars ..
real DMIN, DSTEP, YDIST
INTEGER I, IFAIL, J, LDX, M, METHOD, N, NSYM
CHARACTER DIST, SCALE, UPDATE
* .. Local Arrays
real CD(NMAX-1), D(NMAX*(NMAX-1)/2), DORD(NMAX),
+ S(MMAX), X(NMAX,MMAX)
INTEGER ILC(NMAX-1), IORD(NMAX), ISX(MMAX), IUC(NMAX-1),
+ IWK(2*NMAX)
CHARACTER*60 C(LENC)
CHARACTER* 3 NAME ( NMAX)
* .. External Subroutines ..
EXTERNAL GO3EAF, GO3ECF, GO3EHF
* .. Executable Statements

WRITE (NOUT,*) ’‘GO3ECF Example Program Results~’
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* Skip heading in data file
READ (NIN, *)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
READ (NIN,*) METHOD
READ (NIN,*) UPDATE, DIST, SCALE

DO 20 J =1, N
READ (NIN,=*) (X(J,I),I=1,M), NAME(J)
20 CONTINUE

READ (NIN,*) (ISX(I),I=1,M)

()I 1[
READ (NIN,*) (S(I),I=1,M)

*

Compute the distance matrix

IFAIL = O
LDX = NMAX

CALL GO3EAF(UPDATE,DIST,SCALE,N,M,X,LDX,ISX,S,D,IFAIL)
* Perform clustering

IFAIL = 0

CALL GO3ECF(METHOD,N,D,ILC,IUC,CD,IORD,DORD, IWK,IFAIL)

WRITE (NOUT, *)

WRITE (NOUT, *) #  Distance Clusters Joined”’

WRITE (NOUT, *)

DO 40 I = 1, N-1

WRITE(NOUT, 99999) CD(I), NAME(ILC(I)),NAME(IUC(I))
40 CONTINUE

*

Produce dendrogram

IFAIL = 0

NSYM = LENC

DMIN = 0.0e0

DSTEP = (CD(N-1))/DBLE(NSYM)

CALL GO3EHF(’S’,N,DORD,DMIN,DSTEP,NSYM,C,LENC, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Dendrogram’
WRITE (NOUT, *)
YDIST = CD(N-1)
DO 60 I = 1, NSYM
IF (MOD(I,3).EQ.1) THEN
WRITE (NOUT,99999) YDIST, C(I)

ELSE
WRITE (NOUT,99998) C(I)
END IF
YDIST = YDIST - DSTEP
60 CONTINUE

WRITE (NOUT, *)
WRITE (NOUT,99998) (NAME(IORD(I)),I=1,N)
END IF
STOP
*
99999 FORMAT (F10.3,5X,23)
99998 FORMAT (15X, 20A)
END
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9.2. Program Data

GO3ECF Example Program Data

53

5

/I/ IS/ /UI
1 5.0 2.0
2 1.0 1.0
3 4.0 3.0
4 1.0 2.0
5 5.0 0.0
0 1 1
1.0 1.0 1.0

’A
’B
’C
‘D
’E

9.3. Program Results

GO3ECF Example Program Results

SON N NN

GO3ECF

Distance Clusters Joined
1.000 B D
2.000 A C
6.500 A E
14.125 A B
Dendrogram

14.125 e

I I

I I

12.006 I I

I I

I I

9.887 I I

I I

I I

7.769 I I

———— I

I I I

5.650 I I I

I I I

I I I

3.531 I I I

I I I

-—=*x T I

1.412 I I I -—---%

I I I I I

A C E B D

[NP2834117)

Page 5 (last)






GO3 - Multivariate Methods GO3EFF

GO3EFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GO3EFF performs K—means cluster analysis.

Specification
SUBROUTINE GO3EFF (WEIGHT, N, M, X, LDX, ISX, NVAR, K, CMEANS, LDC,
1 WT, INC, NIC, CSS, CSW, MAXIT, IWK, WK, IFAIL)
INTEGER N, M, LDX, ISX(M), NVAR, K, LDC, INC(N), NIC(K),
1 MAXIT, IWK(N+3*K), IFAIL
real X(LDX,M), CMEANS (LDC,NVAR), WI(*), CSS(K), CSW(K),
1 WK (N+2*K)

CHARACTER*1 WEIGHT

Description

Given n objects with p variables measured on each object, x; for i = 1,2,..,n; j = 1,2,...p,
GO3EFF allocates each object to one of K groups or clusters to minimize the within-cluster sum
of squares:

K P

222 (),

k=1ieS, j=1
where S, is the set of objects in the kth cluster and X,; is the mean for the variable j over cluster
k. This is often known as K—means clustering.
In addition to the data matrix, a K by p matrix giving the initial cluster centres for the K clusters
is required. The objects are then initially allocated to the cluster with the nearest cluster mean.
Given the initial allocation, the procedure is to iteratively search for the K—partition with locally
optimal within-cluster sum of squares by moving points from one cluster to another.
Optionally, weights for each object, w;, can be used so that the clustering is based on
within-cluster weighted sums of squares:

K P
zzzwi (xij—x-kj)z’

k=lieS, j=1
where x,; is the weighted mean for variable j over cluster k.
The routine is based on the algorithm of Hartigan and Wong [2].

References

[11 EVERITT, B.
Cluster Analysis.
Heinemann, 1974.

[2] HARTIGAN, J.A. and WONG, M.A,
Algorithm AS 136. A K-Means clustering algorithm.
Appl. Statist., 28, Algorithm AS136, pp. 100-108, 1979.

[3] KENDALL, M. and STUART, A.
The Advanced Theory of Statistics, Vol. 3, pp. 302.
Griffin, London, 1975.

[4] KRZANOWSKI, W.J.
Principles of Multivariate Analysis.
Oxford University Press, 1990.

[NP2478/16}) Page 1



GO3EFF GO03 — Multivariate Methods

10:

Parameters
WEIGHT - CHARACTER*1, Input

On entry: indicates if weights are to be used.
If WEIGHT = U’ (Unweighted), then no weights are used.
If WEIGHT = 'W' (Weighted), then weights are used and must be supplied in WT.

Constraint: WEIGHT = 'U' or 'W'.

N — INTEGER. Input
On entry: the number of objects, n.
Constraint: N > 1,

M - INTEGER. Input
On entry:. the total number of variables in array X.
Constraint: M 2 NVAR.

X(LDX,M) — real array. Input

Onentry: X(ij) must contain the value of the jth variable for the ith object for
i=12,.nj=12..M

LDX — INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3EFF is called.

Constraint. LDX 2 N.

ISX(M) — INTEGER array. Input

On entry: ISX(j) indicates whether or not the jth variable is to be included in the analysis.
If ISX(j) > O, then the variable contained in the jth column of X is included, for
j=12,..M.

Constraint: ISX(j) > 0 for NVAR values of j.

NVAR - INTEGER. Input
On entry: the number of variables included in the sums of squares calculations, p.
Constraint: 1 < NVAR < M,

K — INTEGER. Input
On entry: the number of clusters, K.
Constraint: K 2 2.

CMEANS (LDC,NVAR) - real array. Input/ Output

On entry: CMEANS (i,j) must contain the value of jth variable for ith initial cluster centre,
fori=12..K;j=1.2,.p.

On exit: CMEANS (i,j) contains the value of jth variable for ith computed cluster centre, for
i=12.kK;,j=12..p.

LDC - INTEGER. Input

On entry: the first dimension of the array CMEANS as declared in the (sub)program from
which GO3EFF is called.

Constraint. LDC 2 K.
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11:

12:

13:

14:

15:

16:

17:

18:

19:

WT(*) — real array. Input

Note: the dimension of the array WT must be at least N if WEIGHT = 'W', and must be at
least 1 otherwise.

On entry. if WEIGHT = 'W' then the first n elements of WT must contain the weights to be
used.

If WT(i) = 0.0, then the ith observations is not included in the analysis. The effective
number of observations is the sum of the weights.

If WEIGHT = 'U' then WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT = 'W' then WT(i) 2 0.0, fori = 1,2,...,n. and WT(i) > 0.0 for
at least two values of i.

INC(N) — INTEGER array. Output

Onexit: INC(i) contains the cluster to which the ith object has been allocated, for
i=12,..n.

NIC(K) - INTEGER array. Output
On exit: NIC(i) contains the number of objects in the ith cluster, for i = 1,2,....K.

CSS(K) - real array. Output

On exit: CSS(i) contains the within-cluster (weighted) sum of squares of the ith cluster, for
i=12,..K.

CSW(K) - real array. Output

Onexit: CSW(i) contains the within-cluster sum of weights of the ith cluster, for
i =1.2,. K. If WEIGHT = 'U' the sum of weights is the number of objects in the cluster.

MAXIT - INTEGER. Input
On entry: the maximum number of iterations allowed in the analysis.
Constraint: MAXIT > 0.
Suggested value: MAXIT = 10.

IWK(N+3*K) — INTEGER array. Workspace
WK (N+2*K) — real array. Workspace
IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, WEIGHT # 'W' or 'U’,
or N < 2,
or NVAR < 1,
or M < NVAR,
or K < 2,
or LDX < N,
or LDC < K,
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or MAXIT < 0.
IFAIL = 2

On entry, WEIGHT = 'W' and a value of WT(i) < 0.0 for some i,

or WEIGHT = 'W'and WT(i) = 0.0 for all or all but one values of i.
IFAIL = 3

On entry, the number of positive values in ISX does not equal NVAR.

IFAIL = 4

On entry, at least one cluster is empty after the initial assignment. Try a different set of
initial cluster centres in CMEANS and also consider decreasing the value of K. The empty
clusters may be found by examining the values in NIC.

IFAIL = 5

Convergence has not been achieved within the maximum number of iterations given by
MAXIT. Try increasing MAXIT and, if possible, use the returned values in CMEANS as the
initial cluster centres.

Accuracy

The routine produces clusters that are locally optimal; the within-Cluster sum of squares may not
be decreased by transfering a point from one cluster to another, but different partitions may have
the same or smaller within-cluster sum of squares.

Further Comments
The time per iteration is approximately proportional to npK.

Example

The data consists of observations of five variables on twenty soils (Kendall and Stuart, [2]). The
data is read in, the K—means clustering performed and the results printed.

Program Text

Note: the listing of the example program prescnted below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3EFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX, KMAX
PARAMETER (NMAX=20, MMAX=5, KMAX=3)
* .. Local Scalars ..
INTEGER I, IFAIL, J, K, LDC, LDX, M, MAXIT, N, NVAR
CHARACTER WEIGHT
* .. Local Arrays ..
real CMEANS ( KMAX, MMAX), CSS(MMAX), CSW(MMAX),
+ WK(NMAX+2*KMAX), WT(NMAX), X(NMAX,MMAX)
INTEGER INC(NMAX), ISX(MMAX), IWK(NMAX+3*KMAX), NIC(MMAX)
* .. External Subroutines
EXTERNAL GO3EFF
* .. Executable Statements

WRITE (NOUT,*) ’'GO3EFF Example Program Results’
* Skip heading in the data file
READ (NIN, %)
READ (NIN,*) WEIGHT, N, M, NVAR, K, MAXIT
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.’'W’ .OR. WEIGHT.EQ.’w’) THEN
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20

40

60

80

*

99999
99998
99997
99996

DO 20 I =1, N
READ (NIN,*) (X(I,J),J=1,M), WT(I)

FORMAT (1X,5F9.2)
FORMAT (1X,5F13.4)
FORMAT (1X,I5,5X,5F8.4)

END

9.2. Program Data

GO3EFF Example Program Data

u’ 20 5 5 3 10 : WEIGHT N M NVAR K MAXIT

77.3
82.5
66.9
47.2
65.3
83.3
81.6
47.8
48.6
61.6
58.6
69.3
61.8
67.7
57.2
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13.0
10.0
20.6
33.8
20.5
10.0
12.7
36.5
37.1
25.5
26.5
22.3
30.8
25.3
31.2

9.7
7.5
12.5
19.0
14.2

e
. e e e e
e e e e e

P e e e

ANONAOANNdoaNoOO IO

e e e e o

NEENBNFNNMNNMNNNENDNDRER

POJOPLPORFRWONWVWOWUL WO
GWIEROJWNNNOWOO WU

HIJ08N&OTUTIo

NAOBPOOWIINI

[

GO3EFF

CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M)
CONTINUE
END IF
DO 60 I =1, K
READ (NIN,*) (CMEANS(I,J),J=1,NVAR)
CONTINUE
READ (NIN,*) (ISX(J),J=1,M)
LDX = NMAX
LDC = KMAX
IFAIL = 0
CALL GO3EFF(WEIGHT,N,M, X, LDX, ISX, NVAR, K, CMEANS, LDC, WT, INC, NIC,
+ CSS,CSW,MAXIT, IWK, WK, IFAIL)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ The cluster each point belongs to’
WRITE (NOUT,99999) (INC(I),I=1,N)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ The number of points in each cluster’
WRITE (NOUT, 99999) (NIC(I),I=1,K)
WRITE (NOUT, *)
WRITE (NOUT, *)
+ ! The within-cluster sum of weights of each cluster’
WRITE (NOUT,99998) (CSW(I),I=1,K)
WRITE (NOUT, *)
WRITE (NOUT, *)
+ ’ The within-cluster sum of squares of each cluster’
WRITE (NOUT,99997) (CSS(I),I=1,K)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ The final cluster centres’
WRITE (NOUT, *)
+ ’ 1 2 3 4 57
DO 80 I =1, K
WRITE (NOUT,99996) I, (CMEANS(I,J),J=1,NVAR)
CONTINUE
END IF
STOP
FORMAT (1X,10I6)

Page 5



GO3EFF GO3 — Multivariate Methods

67.2 22.7 10.1 3.3 6.2

59.2 31.2 9.6 2.4 6.0

80.2 13.2 6.6 2.0 5.8

82.2 11.1 6.7 2.2 7.2

69.7 20.7 9.6 3.1 5.9

82.5 10.0 7.5 1.5 6.5 : CMEANS
47.8 36.5 15.7 2.3 7.2

67.2 22.7 10.1 3.3 6.2

11111 : ISX

9.3. Program Results
GO3EFF Example Program Results

The cluster each point belongs to

1 1 3 2 3 1 1 2 2 3
3 3 3 3 3 3 3 1 1 3
The number of points in each cluster
6 3 11
The within-cluster sum of weights of each cluster
6.00 3.00 11.00
The within-cluster sum of squares of each cluster
46.5717 20.3800 468.8964
The final cluster centres
1 2 3 4 5
1 81.1833 11.6667 7.1500 2.0500 6.6000
2 47.8667 35.8000 16.3333 2.4000 6.7333
3 64.0455 25.2091 10.7455 2.8364 6.6545
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GO3EHF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3EHF produces a dendrogram from the results of GO3ECF.

2 Specification

SUBROUTINE GO3EHF(ORIENT, N, DORD, DMIN, DSTEP, NSYM, C, LENC,

1 IFAIL)
INTEGER N, NSYM, LENC, IFAIL
real DORD(N), DMIN, DSTEP
CHARACTER#1 ORIENT
CHARACTER*(*) C(LENC)

3 Description

Hierarchical cluster analysis as performed by GO3ECF can be represented by a tree that shows at which
distance the clusters merge. Such a tree is known as a dendrogram. See Everitt [1] and Krzanowski [2]
for examples of dendrograms. A simple example is,

® 08D ~n -

—

1

Individuals

[y

Figure 1

The end-points of the dendrogram represent the objects that have been clustered. They should be in a
suitable order as given by GO3ECF. Object 1 is always the first object. In the example above the height
represents the distance at which the clusters merge.

The dendrogram is produced in a character array using the ordering and distances provided by GO3ECF.
Suitable characters are used to represent parts of the tree.

There are four possible orientations for the dendrogram. The example above has the end-points at the
bottom of the diagram which will be referred to as south. If the dendrogram was the other way around
with the end-points at the top of the diagram then the orientation would be north. If the end-points are
at the left-hand or right-hand side of the diagram the orientation is west or east. Different symbols are
used for east/west and north/south orientations.
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4 References

[1] Everitt B S (1974) Cluster Analysis Heinemann
[2] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters

1:

ORIENT — CHARACTER*1 Input

On entry: indicates which orientation the dendrogram is to take.

If ORIENT = ’N’ then the end-points of the dendrogram are to the north.
If ORIENT = ’S’ then the end-points of the dendrogram are to the south.
If ORIENT = ’E’ then the end-points of the dendrogram are to the east.

If ORIENT = W’ then the end-points of the dendrogram are to the west.

Constraint: ORIENT ="N’,’S’,’E’ or 'W’.

N — INTEGER Input
On entry: the number of objects in the cluster analysis.

Constraint: N > 2.

DORD(N) — real array Input

On entry: the array DORD as output by GO3ECF. DORD contains the distances, in dendrogram
order, at which clustering takes place.

Constraint: DORD(N) > DORD(?) for i =1,2,...,N-1.
DMIN — real Input
On entry: the clustering distance at which the dendrogram begins.

Constraint: DMIN > 0.0.

DSTEP — real Input

On entry: the distance represented by one symbol of the dendrogram.

Constraint: DSTEP > 0.0.

NSYM — INTEGER Input

On entry: the number of character positions used in the dendrogram. Hence the clustering distance
at which the dendrogram terminates is given by DMIN + NSYM x DSTEP.

Constraint: NSYM > 1.

C(LENC) — CHARACTER*(*) Output

Note. The length of each element of C must be at least 3 x N if ORIENT = "N’ or ’S’, or at least
NSYM if ORIENT = "E’ or 'W’.

On ezit: the elements of C contain consecutive lines of the dendrogram.

LENC — INTEGER Input
On entry: the dimension of the array C as declared in the (sub)program from which is called.
Constraints:

If ORIENT = ’N’or ’S’, LENC > NSYM,
if ORIENT = ’E’ or 'W’, LENC > N.
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9: IFAIL — INTEGER Input/Output
On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL =1
On entry, N < 2,
or NSYM < 1,
or DMIN < 0.0,

or DSTEP < 0.0,

or ORIENT # 'N’,’S’, ’E’, or 'W’,

or ORIENT =’N’or ’S’, LENC < NSYM,
or ORIENT = E’or 'W’, LENC < N,

or the number of characters that can be stored in each element of array C is insufficient
for the requested orientation.

IFAIL = 2
On entry, DORD(N) < DORD(i), for somei=1,2,...,N-1.

7 Accuracy

Not applicable.

8 Further Comments

The scale of the dendrogram is controlled by DSTEP. The smaller the value DSTEP is, the greater the
amount of detail that will be given but NSYM will have to be larger to give the full dendrogram. The
range of distances represented by the dendrogram is DMIN to NSYM x DSTEP. The values of DMIN,
DSTEP and NSYM can thus be set so that only part of the dendrogram is produced.

The dendrogram does not include any labelling of the objects. The user can print suitable labels using
the ordering given by the array IORD returned by GO3ECF.

9 Example

Data consisting of three variables on five objects are read in. Euclidean squared distances are computed
using GO3EAF and median clustering performed by GO3ECF. GO3EHF is used to produce a dendrogram
with orientation east and a dendrogram with orientation south. The two dendrograms are printed.
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9.1 Program Text

G03 - Multivariate Methods

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretationof these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

*
*
*

20

GO3EHF .4

+

+

GO3EHF Example Program Text

Mark 16 Release.
.. Parameters ..
INTEGER
PARAMETER
INTEGER
PARAMETER

. Local Scalars .

real
INTEGER
CHARACTER

NAG Copyright 1992.

NIN, NOUT

(NIN=5,NOUT=6)

NMAX, MMAX, LDC
(NMAX=10,MMAX=10,LDC=100)

DMIN, DSTEP
I, IFAIL, J, LDX, M, METHOD, N, NSYM
DIST, SCALE, UPDATE

. Local Arrays ..

real

INTEGER

CHARACTER*50

CD(NMAX-1), D(NMAX*(NMAX-1)/2), DORD(NMAX),
S(MMAX), X(NMAX,MMAX)

ILC(NMAX-1), IORD(NMAX), ISX(MMAX), IUC(NMAX-1),
IWK(2*NMAX)

c(LpC)

. External Subroutines ..

EXTERNAL

GO3EAF, GO3ECF, GO3EHF

.. Executable Statements .
WRITE (NOUT,*) ’GO3EHF Example Program Results’
Skip heading in data file

READ (NIN,*)

READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
READ (NIN,*) METHOD
READ (NIN,*) UPDATE, DIST, SCALE
D020 J =1, X
READ (NIN,#*) (X(J,I),I=1,M)

CONTINUE

READ (NIN,#*) (ISX(I),I=1,M)
READ (NIN,*) (S(I),I=1,M)
READ (NIN,*) DMIN, DSTEP, NSYM

Compute the distance matrix

IFAIL = 0
LDX = NMAX

CALL GO3EAF(UPDATE,DIST,SCALE,N,M,X,LDX,ISX,S,D,IFAIL)

Perform clustering

IFAIL = 0

CALL GO3ECF(METHOD,N,D,ILC,IUC,CD,IORD,DORD,IWK,IFAIL)

Produce dendrograms

IFAIL = 0O

CALL GO3EHF(’E’,N,DORD,DMIN,DSTEP,NSYM,C,LDC,IFAIL)

WRITE (NOUT,*)
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40

60

WRITE (NOUT,*) ’Dendrogram, Orientation East’
D040 I =1, N

WRITE (NOUT,*) C(I)
CONTINUE

READ (NIN,*) DMIN, DSTEP, NSYM
IFAIL = 0

CALL GO3EHF(’S’,N,DORD,DMIN,DSTEP,NSYM,C,LDC,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*) ’'Dendrogram, Orientation South’
DO 60 I = 1, NSYM
WRITE (NOUT,*) C(I)
CONTINUE

END IF
STOP

END

9.2 Program Data

GO3EHF Example Program Data

53
5
10

-

O O O Wb WN
O O H K+ 00 00 O = =
o e O O 000

’SI

O N W N =
O O O oo

40
40

9.3 Program Results

GO3EHF Example Program Results

Dendrogram, Orientation East
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GO3EHF

Dendrogram, Orientation South
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GO3EJF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3EJF computes a cluster indicator variable from the results of GO3ECF.

2 Specification

SUBROUTINE GO3EJF(N, CD, IORD, DORD, K, DLEVEL, IC, IFAIL)
INTEGER N, IORD(N), K, IC(N), IFAIL
real CD(N—1), DORD(N), DLEVEL

3 Description

Given a distance or dissimilarity matrix for n objects, cluster analysis aims to group the n objects into
a number of more or less homogeneous groups or clusters. With agglomerative clustering methods (see
GO3ECF) a hierarchical tree is produced by starting with n clusters each with a single object and then at
each of n — 1 stages merging two clusters to form a larger cluster until all objects are in a single cluster.
GO3EJF takes the information from the tree and produces the clusters that exist at a given distance.
This is equivalent to taking the dendrogram (see GO3EHF) and drawing a line across at a given distance
to produce clusters.

As an alternative to giving the distance at which clusters are required, the user can specify the number of
clusters required and GO3EJF will compute the corresponding distance. However, it may not be possible
to compute the number of clusters required due to ties in the distance matrix.

If there are k clusters then the indicator variable will assign a value between 1 and k to each object to
indicate to which cluster it belongs. Object 1 always belongs to cluster 1.

4 References
[1] Everitt B S (1974) Cluster Analysis Heinemann

[2] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters

1: N — INTEGER Input

On entry: the number of objects, n.
Constraint: N > 2.

2: CD(N-1) — real array Input
On entry: the clustering distances in increasing order as returned by GO3ECF.

Constraint: CD(i + 1) > CD(¢),i=1,2,..., N —-2.

3: IORD(N) — INTEGER array Input
On entry: the objects in dendrogram order as returned by GO3ECF.

4: DORD(N) — real array Input
On entry: the clustering distances corresponding to the order in IORD.
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5: K — INTEGER Input/Output

On entry: indicates if a specified number of clusters is required.
If K> 0 then GO3EJF will attempt to find K clusters.

If K < 0 then GO3EJF will find the clusters based on the distance given in DLEVEL.
Constraint: K < N.
On ezit: the number of clusters produced, k.

6: DLEVEL — real Input/Output

On entry: if K < 0, then DLEVEL must contain the distance at which clusters are produced.
Otherwise DLEVEL need not be set.

Constraint: if K < 0 then DLEVEL > 0.0.
On ezit: if K > 0 on entry, then DLEVEL contains the distance at which the required number of

clusters are found. Otherwise DLEVEL remains unchanged.

7: IC(N) — INTEGER array Output
On ezit: IC(7) indicates to which of k clusters the ith object belongs, fori =1,2,...,n.

8: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL =1

On entry, K >N,
or K <0 and DLEVEL < 0.0.
or N<2.

IFAIL =2

On entry, CD is not in increasing order,
or DORD is incompatible with CD.

IFAIL =3

On entry, K=1,
or K=N,
or DLEVEL > CD(N - 1),
or DLEVEL < CD(1).

Note. On exit with this value of IFAIL the trivial clustering solution is returned.

IFAIL =4

The precise number of clusters requested is not possible because of tied clustering distances. The
actual number of clusters, less than the number requested, is returned in K.
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7 Accuracy
The accuracy will depend upon the accuracy of the distances in CD and DORD (see GO3ECF).

8 Further Comments

A fixed number of clusters can be found using the non-hierarchical method used in GO3EFF.

9 Example

Data consisting of three variables on five objects are input. Euclidean squared distances are computed
using GO3EAF and median clustering performed using GO3ECF. A dendrogram is produced by GO3EHF
and printed. GO3EJF finds two clusters and the results are printed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO3EJF Example Program Text
* Mark 18 Revised. NAG Copyright 1997.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,N0UT=6)
INTEGER NMAX, MMAX, LENC
PARAMETER (NMAX=10,MMAX=10,LENC=20)
* .. Local Scalars ..
real DLEVEL, DMIN, DSTEP, YDIST
INTEGER I, IFAIL, J, K, LDX, M, METHOD, N, NSYM
CHARACTER DIST, SCALE, UPDATE
* .. Local Arrays .
real CD(NMAX-1), D(NMAX*(NMAX-1)/2), DORD(NMAX),
+ S(MMAX), X(NMAX,MMAX)
INTEGER IC(NMAX), ILC(NMAX-1), IORD(NMAX), ISX(MMAX),
+ IUC(NMAX-1), IWK(2*NMAX)
CHARACTER*60 C(LENC)
CHARACTER*3 NAME (NMAX)
* .. External Subroutines ..
EXTERNAL GO3EAF, GO3ECF, GO3EHF, GO3EJF
* .. Executable Statements ..
WRITE (NOUT,*) ’'GO3EJF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
READ (NIN,*) METHOD
READ (NIN,*) UPDATE, DIST, SCALE
D020J =1, K
READ (NIN,*) (X(J,I),I=1,M), NAME(J)
20 CONTINUE
READ (NIN,*) (ISX(I),I=1,M)
READ (NIN,*) (S(I),I=1,M)
READ (NIN,*) K, DLEVEL

[NP3086/18] GO3EJF.3



GO3EJF

40

*

60

80

GO3EJF .4

G03 - Multivariate Methods

Compute the distance matrix

IFAIL = 0
LDX = NMAX

CALL GO3EAF(UPDATE,DIST,SCALE,N,M,X,LDX,ISX,S,D,IFAIL)
Perform clustering
IFAIL = O

CALL GO3ECF(METHOD,N,D,ILC,IUC,CD,IORD,DORD,IWK,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Distance Clusters Joined’
WRITE (NOUT,*)
DO40I=1, N -1
WRITE (NOUT,99999) CD(I), NAME(ILC(I)), NAME(IUC(I))
CONTINUE

Produce dendrogram

IFAIL = 0
NSYM = LENC
DMIN = 0.0e0

DSTEP = (CD(N-1))/real (NSYM)
CALL GO3EHF(’S’,N,DORD,DMIN,DSTEP,NSYM,C,LENC,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*) ’Dendrogram’
WRITE (NOUT,*)
YDIST = CD(N-1)
DO 60 I = 1, NSYM
IF (MOD(I,3).EQ.1) THER
WRITE (NOUT,99999) YDIST, C(I)

ELSE
WRITE (NOUT,99998) C(I)
END IF
YDIST = YDIST - DSTEP
CONTINUE

WRITE (NOUT,*)
WRITE (NOUT,99998) (NAME(IORD(I)),I=1,N)
IFAIL = 0

CALL GO3EJF(N,CD,IORD,DORD,K,DLEVEL,IC,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,99997) ’ Allocation to ’, K, ’ clusters’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Object Cluster’
WRITE (NOUT,*)
D08 I=1, N
WRITE (NOUT,99996) NAME(I), IC(I)
CONTINUE
END IF
STOP
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*

99999 FORMAT (F10.3,5X,24)

99998 FORMAT (15X,204)

99997 FORMAT (A,I2,4)

99996 FORMAT (5X,A,5X,I2)
END

9.2 Program Data

GO3EJF Example Program Data
53
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9.3 Program Results
GO3EJF Example Program Results

Distance Clusters Joined
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Allocation to 2 clusters

Object Cluster
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GO3FAF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3FAF performs a principal coordinate analysis also known as classical metric scaling.

2 Specification

SUBROUTINE GO3FAF(ROOTS, N, D, NDIM, X, LDX, EVAL, WK, IWK, IFAIL)

INTEGER N, NDIM, LDX, IWK(5«N), IFAIL

real D(N+(N-1)/2), X(LDX,NDIM), EVAL(N),
1 WK(N+(N417)/2-1)

CHARACTERx*1 ROOTS

3 Description

For a set of n objects a distance matrix D can be calculated such that d;; is a measure of how ‘far apart’
are objects i and j (see GO3EAF for example). Principal coordinate analysis or metric scaling starts with
a distance matrix and finds points X in Euclidean space such that those points have the same distance
matrix. The aim is to find a small number of dimensions, k¥ << (n — 1), that provide an adequate
representation of the distances.

The principal coordinates of the points are computed from the eigenvectors of the matrix £ where
e; = -1/ 2(dfj —d? - d?j —d?) with d? denoting the average of dfj over the suffix j etc.. The eigenvectors
are then scaled by multiplying by the square root of the value of the corresponding eigenvalue.

k n—1

Provided that the ordered eigenvalues, );, of the matrix £ are all positive, Z/\,- / Z A; shows how
1= =
well the data is represented in k dimensions. The eigenvalues will be non-negativle if Ez' ils positive semi-
definite. This will be true provided d;; satisfies the inequality: dj; <d + d;y for all 4, j, k. If this is not
the case the size of the negative eigenvalue reflects the amount of deviation from this condition and the
results should be treated cautiously in the presence of large negative eigenvalues. See Krzanowski [3] for
further discussion. GO3FAF provides the option for all eigenvalues to be computed so that the smallest
eigenvalues can be checked.

4 References

[1] Gower J C (1966) Some distance properties of latent root and vector methods used in multivariate
analysis Biometrika 53 325-338

[2] Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall

[3] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters

1: ROOTS — CHARACTER*1 Input

On entry: indicates if all the eigenvalues are to be computed or just the NDIM largest.

If ROOTS = A’ all the eigenvalues are computed.
If ROOTS = "L’ only the largest NDIM eigenvalues are computed.

Constraint: ROOTS = A’ or 'L’.
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10:

6

N — INTEGER Input

On entry: the number of objects in the distance matrix, n.
Constraint: N > NDIM.
D(N#(N—1)/2) — real array Input

On entry: the lower triangle of the distance matrix D stored packed by rows. That is D((i — 1) *
(i — 2)/2 + j) must contain d;; fori=2,3,...,n;7=1,2,...,i— 1

Constraint: D(1) > 0.0,i=1,2,...,n(n—1)/2.
NDIM — INTEGER Input
On entry: the number of dimensions used to represent the data, k.

Constraint: NDIM > 1.

X(LDX,NDIM) — real array Output
On ezit: the ith row contains k coordinates for the ith point, 1=1,2,...,n.
LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which GO3FAF
is called.

Constraint: LDX > N.

EVAL(N) — real array Output

On ezit: If ROOTS = ’A’, EVAL contains the n scaled eigenvalues of the matrix E. If ROOTS =
’L’, EVAL contains the largest k scaled eigenvalues of the matrix E. In both cases the eigenvalues
are divided by the sum of the eigenvalues (that is, the trace of E).

WEK(N+(N+17)/2—1) — real array Workspace
IWK(5+N) — INTEGER array Workspace
IFAIL — INTEGER Input/Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: TFAIL = 0 unless the routine detects an error (see Section 6).

Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL=1

On entry, NDIM < 1,
or N < NDIM,
or ROOTS # ’A’or 'L,
or LDX < N.

IFAIL=2

On entry, D(i) < 0.0 for some ¢,i =1,2,.. Ln(n—1)/2,
or all elements of D = 0.0.

IFAIL=3

There are less than NDIM eigenvalues greater than zero. Try a smaller number of dimensions
(NDIM) or use non-metric scaling (GO3FCF).

IFAIL=4

The computation of the eigenvalues or eigenvectors has failed. Seek expert help.
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7 Accuracy

The routine uses FO8JFF or FO8JJF to compute the eigenvalues and FO8JKF to compute the eigenvectors.
These routines should be consulted for a discussion of the accuracy of the computations involved.

8 Further Comments

Alternative, non-metric, methods of scaling are provided by GO3FCF.

The relationship between principal coordinates and principal components, see GO3FCF, is discussed in
Krzanowski [3] and Gower [1].

9 Example

The data, given by Krzanowski [3], are dissimilarities between water vole populations in Europe. The
first two principal co-ordinates are computed by GO3FAF and then plotted using GO1AGF.

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

GO3FAF Example Program Text
Mark 17 Release. NAG Copyright 1995.

. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NNMAX
PARAMETER (NMAX=14 ,NNMAX=NMAX*(NMAX-1)/2)
* .. Local Scalars ..
INTEGER I, IFAIL, J, N, NDIM, NN
CHARACTER ROOTS
* .. Local Arrays ..
real D(NNMAX), E(NMAX), WK(NNMAX+9*NMAX), X(NMAX,NMAX)
INTEGER IWK(5*NMAX)
* .. External Subroutines .
EXTERNAL GO1AGF, GO3FAF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO3FAF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NDIM, ROOTS
IF (N.LE.NMAX) THEN
NN = N*(N-1)/2
READ (NIN,*) (D(I),I=1,NN)
IFAIL = 0

CALL GO3FAF(ROOTS,N,D,NDIM,X,NMAX,E,WK,IWK,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Scaled Eigenvalues’
WRITE (NOUT,*)
IF (ROOTS.EQ.’L’ .OR. ROOTS.EQ.’1’) THEN
WRITE (KOUT,99999) (E(I),I=1,NDIM)
ELSE
WRITE (NOUT,99999) (E(I),I=1,N)
END IF
WRITE (NOUT,*)
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WRITE (NOUT,*) ’ Co-ordinates’

WRITE (NOUT,*)

pDO20I =1, N

WRITE (NOUT,99999) (Xx(1,3),J=1,NDIM)
20 CONTINUE

WRITE (NOUT,*)

WRITE (NOUT,*) ’ Plot of first two dimensions’
WRITE (NOUT,*)

IFAIL = 0

CALL GO1AGF(X,X(1,2),N,IWK,50,18,IFAIL)
END IF
STOP

*
99999 FORMAT (8F10.4)
END

9.2 Example Data

GO3FAF Example Program Data

14 2’1’

0.099

0.033 0.022

0.183 0.114 0.042

0.148 0.224 0.059 0.068

0.198 0.039 0.053 0.085 0.051

0.462 0.266 0.322 0.435 0.268 0.025

0.628 0.442 0.444 0.406 0.240 0.129 0.014

0.113 0.070 0.046 0.047 0.034 0.002 0.106 0.129

0.173 0.119 0.162 0.331 0.177 0.039 0.089 0.237 0.071

0.434 0.419 0.339 0.505 0.469 0.390 0.315 0.349 0.151 0.430

0.762 0.633 0.781 0.700 0.758 0.625 0.469 0.618 0.440 0.538 0.607

0.530 0.389 0.482 0.579 0.597 0.498 0.374 0.562 0.247 0.383 0.387 0.084
0.586 0.435 0.550 0.530 0.552 0.509 0.369 0.471 0.234 0.346 0.456 0.090 0.038

9.3 Example Results

GO3FAF Example Program Results
Scaled Eigenvalues
0.7871 0.2808

Co-ordinates

0.2408 0.2337
0.1137 0.1168
0.2394 0.0760
0.2129 0.0605
0.2495 -0.0693
0.1487 -0.0778

-0.0514 -0.1623
0.0115  -0.3446
-0.0039 0.0059
0.0386 -0.0089
-0.0421 -0.0566
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-0.5158 0.0291
-0.3180 0.1501
-0.3238 0.0475

Plot of first two dimensions

0.4000
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GO3FCF — NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3FCF performs non-metric (ordinal) multidimensional scaling.

2 Specification

SUBROUTINE GO3FCF(TYPE, N, NDIM, D, X, LDX, STRESS, DFIT, ITER,

1 IOPT, WK, IWK, IFAIL)

INTEGER N, NDIM, LDX, ITER, IOPT,

1 IWK(N+(N—1)/2+N+NDIM+5), IFAIL
real D(N*x(N—1)/2), X(LDX,NDIM), STRESS,
1 DFIT(2+«N+(N—1)), WK(15«N+NDIM)
CHARACTER*1 TYPE

3 Description

For a set of n objects a distance or dissimilarity matrix D can be calculated such that d,; is a measure
of how ‘far apart’ are the objects ¢ and j. If p variables =, have been recorded for each observation this
P

measure may be based on Euclidean distance, d;; = Z(xk,- —xkj)2, or some other calculation such as the

number of variables for which z,; # z,;. Alternatif'elly, the distances may be the result of a subjective
assessment. For a given distance matrix, multidimensional scaling produces a configuration of n points in
a chosen number of dimensions, m, such that the distance between the points in some way best matches
the distance matrix. For some distance measures, such as Euclidean distance, the size of distance is
meaningful, for other measures of distance all that can be said is that one distance is greater or smaller
than another. For the former metric scaling can be used, see GO3FAF, for the latter a non-metric scaling
1s more appropriate.

For non-metric multidimensional scaling the criterion used to measure the closeness of the fitted distance
matrix to the observed distance matrix is known as STRESS. STRESS is given by,

Y Yiti(dy — dy)?

where d?j is the Euclidean squared distance between points ¢ and j and d;j is the fitted distance obtained
when d:-j is monotonically regressed on d;;, that is d;j is monotonic relative to d;; and is obtained from

d;j with the smallest number of changes. So STRESS is a measure of by how much the set of points
preserve the order of the distances in the original distance matrix. Non-metric multidimensional scaling
seeks to find the set of points that minimize the STRESS.

An alternate measure is squared STRESS, SSTRESS,
Yim1 Dyma(d = d)?

in which the distances in STRESS are replaced by squared distances.

In order to perform a non-metric scaling an initial configuration of points is required. This can be
obtained from principal co-ordinate analysis, see GO3FAF. Given an initial configuration GO3FCF uses the
optimization routine EO4DGF to find the configuration of points that minimizes STRESS or SSTRESS.
The routine EO4DGF uses a conjugate gradient algorithm. GO3FCF will find an optimum that may only
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be a local optimum, to be more sure of finding a global optimum several different initial configurations
should be used, these can be obtained by randomly perturbing the original initial configuration using
routines from the G05 Chapter.

4 References

[1] Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall
[2] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

5 Parameters

1:

TYPE — CHARACTER*1 Input
On entry: indicates whether STRESS or SSTRESS is to be used as the criterion.

If TYPE = T° STRESS is used.

If TYPE = ’S’ SSTRESS is used.

Constraint: TYPE =S’ or "T".

N — INTEGER Input
On entry: the number of objects in the distance matrix, n.

Constraint: N > NDIM.

NDIM — INTEGER Input
On eniry: the number of dimensions used to represent the data, m.

Constraint: NDIM > 1.

D(N*(N-1)/2) — real array Input
On entry: the lower triangle of the distance matrix D stored packed by rows. That is D((i —1)* (i —
2)/2 + j) must contain d;; for i = 2,3,...,n; j =1,2,...,i— 1. If d;; is missing then set d;; < 0;
for further comments on missing values see Section 8.

X(LDX,NDIM) — real array Input/Output
On entry: the ith row must contain an initial estimate of the co-ordinates for the ith point,
i=1,2,...,n. One method of computing these is to use GO3FAF.

On ezit: the ith row contains m co-ordinates for the ith point, i =1,2,... n.

LDX — INTEGER Input
On entry: the first dimension of the array X as declared in the (sub)program from which GO3FCF
is called.

Constraint: LDX > N.

STRESS — real Output
On ezit: the value of STRESS or SSTRESS at the final iteration.

DFIT(2xN*(N—1)) — real array Output
On erit: auxiliary outputs. If TYPE = *T”, the first n(n — 1)/2 elements contain the distances, d;-j,

for the points returned in X, the second set of n(n — 1)/2 contains the the distances d;j ordered by
the input distances, d;;, the third set of n(n — 1)/2 elements contains the the monotonic distances,

d:-j, ordered by the input distances, d;; and the final set of n(n — 1)/2 elements contains fitted
monotonic distances, d;j, for the points in X. The d;j corresponding to distances which are input as
missing are set to zero. If TYPE = ’S’, the results are as above except that the squared distances

are returned.

Each distance matrix is stored in lower triangular packed form in the same way as the input matrix

D.
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9: ITER — INTEGER Input

On entry: the maximum number of iterations in the optimization process. If ITER = 0 a default
value of 50 is used, if ITER < 0 a default value of max(50, 5nm) (the default for EO4DGF) is used.

10: IOPT — INTEGER Input

On entry: selects the options, other than the number of iterations, that control the optimization.
If IOPT = 0, default values are selected as described in Section 8. In particular if an accuracy
requirement of ¢ = 0.00001 is selected, see Section 7. If IOPT > 0, the default values are used
except that the accuracy is given by 107 where i = IOPT. Finally, if IOPT < 0 the option setting
mechanism of EO4DGF can be used to set all options except Iteration Limit; this option is only
recommended for experienced users of NAG optimization routines. For further details see E04DGF.

11: WK(15xN«NDIM) — real array Workspace
12: ITWK(N*(N-1)/2+N*NDIM+5) — INTEGER array Workspace
13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF). '

Errors detected by the routine:

IFAIL=1
On entry, NDIM < 1,
or N < NDIM,
or TYPE # T’ or ’S’,
or LDX < N.

IFAIL=2
On entry, all elements of D < 0.0.
IFAIL=3

The optimization has failed to converge in ITER function iterations. Try either increasing the
number of iterations using ITER or increasing the value of ¢, given by IOPT, used to determine
convergence. Alternatively try a different starting configuration.

IFAIL=4

The conditions for an acceptable solution have not been met but a lower point could not be found.
Try using a larger value of ¢, given by IOPT.

IFAIL=5

The optimization cannot begin from the initial configuration. Try a different set of points.

IFAIL=6

The optimization has failed. This error is only likely if IOPT < 0. It corresponds to IFAIL = 4, 7
or 9 in E04DGF.

7 Accuracy

After a successful optimization the relative accuracy of STRESS should be approximately ¢, as specified
by IOPT.
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8 Further Comments

The optimization routine EO4DGF used by GO3FCF has a number of options to control the process. The
options for the maximum number of iterations (Iteration Limit) and accuracy (Optimality Tolerance)
can be controlled by ITER and IOPT repectively. The printing option (Print Level) is set to —1 to give
no printing. The other option set is to stop the checking of derivatives (Verify=No) for efficiency. All
other options are left at their default values. If however IOPT < 0 1s used, only the maximum number of
iterations is set. All other options can be controlled by the option setting mechanism of EO4DGF with
the defaults as given by that routine.

Missing values in the input distance matrix can be specified by a negative value and providing there
are not more than about two thirds of the values missing the algorithm may still work. However the
routine GO3FAF does not allow for missing values so an alternative method of obtaining an initial set
of co-ordinates is required. It may be possible to estimate the missing values with some form of average
and then use GO3FAF to give an initial set of co-ordinates.

9 Example

The data, given by Krzanowski [2], are dissimilarities between water vole populations in Europe. Initial
estimates are provided by the first two principal co-ordinates computed by GO3FAF. The two dimension
solution is computed using GO3FCF and then plotted using GO1AGF.

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO3FCF Example Program Text
* Mark 17 Release. NAG Copyright 1995.
. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, MMAX, NNMAX
PARAMETER (NMAX=14 ,MMAX=2, NNMAX=NMAX*(NMAX-1)/2)
* .. Local Scalars ..
real STRESS
INTEGER I, IFAIL, IOPT, ITER, J, LDX, N, NDIM, NN
CHARACTER TYPE
* .. Local Arrays ..
real ‘ D(NNMAX), DFIT(4*NNMAX), WK(NNMAX+15*xNMAX*MMAX),
+ X(NMAX,NMAX) -
INTEGER IWK (NNMAX+NMAX*NMAX+5)
* .. External Subroutines ..
EXTERNAL GO1AGF, GO3FAF, GO3FCF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO3FCF Example Program Results’
* Skip heading in data file

READ (NIN,=*)
READ (NIN,*) N, NDIM, TYPE
IF (N.LE.NMAX) THEN

NN = N*(N-1)/2

READ (NIN,*) (D(I),I=1,NN)

LDX = NMAX

IFAIL = O

CALL GO3FAF(’L’,N,D,NDIM,X,LDX,WK,WK(N+1),IWK,IFAIL)
ITER = O

IOPT = 0

IFAIL = 0O
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20

%*

99999 FORMAT (10X, ’STRESS = ’,e13.4)

CALL GO3FCF(TYPE,N,NDIM,D,X,LDX,STRESS,DFIT,ITER,IOPT, WK, IWK,
IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,99999) STRESS
WRITE (NOUT,*)
WRITE (NOUT,*) ’® Co-ordinates’

WRITE

DO 20 I =1
WRITE (NOUT,99998) (x(1,7),J=1,NDIM)
CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Plot of first two dimensions’
WRITE (NOUT,*)
IFAIL = 0
CALL GOlAGF(X(l,l),1(1,2),N,IWK,50,18,IFAIL)
END IF
STOP

(NOUT, *)

, N

99998 FORMAT (8F10.4)
END

9.2 Example Data

GO3FCF Example Program Data

14 2 '’

.099
.033
.183
.148
.198
.462
.628
.113
.173
.434°
.762
.530
.586

O OO0 OO0 O0OO0OO0OO0OO0O O OO0

O O OO0 O0OO0OO0OO0OO0OO0O0O OO

.022
.114
.224
.039
.266
.442
.070
.119
.419
.633
.389
.435

O OO0 O0OO0OO0OO0OO0OO0OOo0

.042
.059
.053
.322
.444
.046
.162
.339
.781
.482
.550

(o« e e lNeNeNe e Ne o)

9.3 Example Results

.068
.085
.435
.406
.047
.331
.505
.700
.579
.530

GO3FCF Example Program

STRESS =

Co-ordinates

0.2060
0.1063
0.2224
0.3032
0.2645

[NP2834/17]

0.2438
0.1418
0.0817
0.0355
-0.0698

0.

.051
.268
.240
.034
177
.469
.758
.597
.552

O O OO OO O OO
O O OO O O oo

Results

1256E+00

.509

.129

.237 0.071

.349 0.151 0.430

.618 0.440 0.538 0.607

.562 0.247 0.383 0.387 0.084
.471 0.234 0.346 0.456 0.090 0.038

GO3FCF
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0.1554 -0.
-0.0070 -0.
0.0749 -0.
0.0488 0
0.0124 -0.
-0.1649 -0.
-0.5073 0
-0.3093 0
-0.3498 0

Plot of first

+. + +. +
0.200+
1
1
1
0.000+....+ .+ +
-0.200+
-0.400+....+....+....+...
-.6000 -.4000
-.5000 -.3000

GO3FCF.6 (last)

0435
1612
3275
.0289
0267
2500
.1267
.1590
.0700

two dimensions

G03 — Multivariate Methods

+ .

+
1 .
I

+
+...0.t,

0.4000

0.3000
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GO3ZAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GO3ZAF produces standardized values (z-scores) for a data matrix.

2. Specification
SUBROUTINE GO3ZAF (N, M, X, LDX, NVAR, ISX, S, E, Z, LDZ,

1 IFAIL)
INTEGER N, M, LDX, NVAR, ISX(M), LDZ, IFAIL
real X(LDX,M), S(M), E(M), Z(LDZ,NVAR)

3. Description
For a data matrix, X, consisting of n observations on p variables, with elements x;, GO3ZAF
computes a matrix, Z, with elements z; such that:

X — U
z; = Xi — K i=12,..mj=12..p,
g;

where ; is a location shift and o; is a scaling factor. Typically u; will be the mean and o; will
be the standard deviation of the jth variable and therefore the elements in column j of Z will have
zero mean and unit variance.

4, References
None.

5. Parameters

1: N - INTEGER. Input
On entry: the number of observations in the data matrix, n.
Constraint: N 2 1.

2: M - INTEGER. Input
On entry: the number of variables in the data array X.
Constraint: M 2 NVAR.

3:  X(LDXM) — real array. Input
On entry: X(i,j) must contain the ith sample point for the jth variable, x;, for i = 1,2,...,n;
j=12.. .M

4: LDX - INTEGER. Input

On entry: the first dimension of the array X as declared in the (sub)program from which
GO3ZAF is called.

Constraint: LDX 2 N,

5:  NVAR - INTEGER. Input
On entry: the number of variables to be standardized, p.
Constraint: NVAR 2 1.
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10:

11:

Page 2

ISX(M) — INTEGER array. Input

On entry. ISX(j) indicates whether or not the observations on the jth variable are included
in the matrix of standardized values.

If ISX(j) # O, then the observations from the jth variable are included.
If ISX(j) = O, then the observations from the jth variable are not included.
Constraint. ISX(j) # 0 for NVAR values of j.

S(M) - real array. Input
Onentry. if ISX(j) # 0, then S(j) must contain the scaling (standard deviation), o;, for
the jth variable.

If ISX(j) = 0, then S(j) is not referenced.
Constraint: if ISX(j) # 0, then S(j) > 0.0 for j = 1,2,..,.M.

E(M) - real array. Input
Onentry. if ISX(j) # 0, then E(j) must contain the location shift (mean), H;, for the jth
variable.

If ISX(j) = 0, then E(j) is not referenced.

Z(LDZ,NVAR) - real array. Output
On exit:. the matrix of standardized values (z-scores), Z.

LDZ — INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
GO03ZAF is called.

Constraint: LDZ 2 N.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL. = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1,
or NVAR < 1,
or M < NVAR,
or LDX < N,
or LDZ < N.
IFAIL = 2

On entry, there are not precisely NVAR elements of ISX # 0.

IFAIL = 3
On entry, ISX(j) # 0 and S(j) < 0.0 for some j.

Accuracy
Standard accuracy is achieved.
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8. Further Comments
Means and standard deviations may be obtained using GO1AAF or G02BXF.

9. Example

A 4 by 3 data matrix is input along with location and scaling values. The first and third columns
are scaled and the results printed.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO3ZAF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=4 , MMAX=3)
* .. Local Scalars ..
INTEGER 1, IFAaIL, J, M, N, NVAR
* .. Local Arrays ..
real E (MMAX), S(MMAX), X(NMAX,MMAX), Z (NMAX, MMAX)
INTEGER ISX(MMAX)
* .. External Subroutines ..
EXTERNAL GO03zZAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'GO3ZAF Example Program Results’
* Skip headings in data file

READ (NIN, *)
READ (NIN,*) N, M, NVAR
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
DO 20 I =1, N
READ (NIN,*) (X(I,J),J=1,M)
20 CONTINUE
READ (NIN,*) (ISX(J),J=1,M)
READ (NIN,*) (E(J),J=1,M)
READ (NIN,*) (S(J),J=1,M)
IFAIL = 0

CALL GO3ZAF(N,M,X,NMAX,NVAR,ISX,S,E,Z,NMAX,IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Standardized Values’
DO 40 I =1, N
WRITE (NOUT,99999) (2(1,J),J=1,NVAR)
40 CONTINUE
END IF
STOP
*
99999 FORMAT (1X,9F8.3)
END

9.2. Program Data

G03ZAF Example Program Data
4 3 2

15.0 0.0 1500.0

12.0 1.0 1000.0

18.0 2.0 1200.0

14.0 3.0 500.0

1 0 1

14.75 0.0 1050.0

2.50 0.0 420.3
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9.3. Program Results
GO3ZAF Example Program Results

Standardized Values
0.100 1.071

-1.100 -0.119
1.300 0.357

-0.300 -1.309

Page 4 (last) [NP2136/15)]
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Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine
Name

GO4AGF

GO4BBF

GO4BCF

GO4CAF

GO4DAF
GO4DBF

GO4EAF

Mark of
Introduction

8

16

17

16

17
17

17

Purpose

Two-way analysis of variance, hierarchical classification, subgroups of
unequal size

Analysis of variance, randomized block or completely randomized design,
treatment means and standard errors

Analysis of variance, general row and column design, treatment means
and standard errors

Analysis of variance, complete factorial design, treatment means and
standard errors

Computes sum of squares for contrast between means

Computes confidence intervals for differences between means computed
by G04BBF or G04BCF

Computes orthogonal polynomials or dummy variables for fac-
tor/classification variable
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Chapter G04
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1 Scope of the Chapter

This chapter is concerned with methods for analysing the results of designed experiments. The range of
experiments covered includes:

(1) single factor designs with equal sized blocks such as randomised complete block and balanced
incomplete block designs,

(2) row and column designs such as Latin squares, and

(3) complete factorial designs.

Further designs may be analysed by combining the analyses provided by multiple calls to routines or by
using general linear model routines provided in Chapter G02.

2 Background to the Problems
2.1 Experimental Designs

An experimental design consists of a plan for allocating a set of controlled conditions, the treatments, to
subsets of the experimental material, the plots or units. Two examples are:

(a) In an experiment to examine the effects of different diets on the growth of chickens, the chickens
were kept in pens and a different diet was fed to the birds in each pen. In this example the pens
are the units and the different diets are the treatments.

(b) In an experiment to compare four materials for ware-loss, a sample from each of the materials
is tested in a machine that simulates ware. The machine can take four samples at a time and a
number of runs are made. In this experiment the treatments are the materials and the units are
the samples from the materials.

In designing an experiment the following principles are important.

(1) Randomisation: Given the overall plan of the experiment, the final allocation of treatments to units
is performed using a suitable random allocation. This avoids the possibility of a systematic bias in
the allocation and gives a basis for the statistical analysis of the experiment.

(2) Replication: Each treatment should be ‘observed’ more than once. So in example (b) more than
one sample from each material should be tested. Replication allows for an estimate of the variablity
of the treatment effect to be measured.

(3) Blocking: In many situations the experimental material will not be homogeneous and there may
be some form of systematic variation in the experimental material. In order to reduce the effect
of systematic variation the material can be grouped into blocks so that units within a block are
similar but there is variation between blocks. For example, in an animal experiment litters may be
considered as blocks; in an industrial experiment it may be material from one production batch.

(4) Factorial designs: If more than one type of treatment is under consideration, for example the effect
of changes in temperature and changes in pressure, a factorial design consists of looking at all
combinations of temperature and pressure. The different types of treatment are known as factors
and the different values of the factors that are considered in the experiment are known as levels. So
if three temperatures and four different pressures were being considered, then factor 1 (temperature)
would have 3 levels and factor 2 (pressure) would have four levels and the design would be a 3x4
factorial giving a total of 12 treatment combinations. This design has the advantage of being able
to detect the interaction between factors, that is, the effect of the combination of factors.

The following are examples of standard experimental designs; in the descriptions, it is assumed that there
are ¢ treatments.

(1) Completely Randomised Design: There are no blocks and the treatments are allocated to units at
random.

(2) Randomised Complete Block Design: The experimental units are grouped into b blocks of ¢ units
and each treatment occurs once in each block. The treatments are allocated to units within blocks
at random.
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(3) Latin Square Designs: The units can be represented as cells of a t X t square classified by rows and
columns. The t rows and ¢ columns represent sources of variation in the experimental material.
The design allocates the treatments to the units so that each treatment occurs once in each row

and each column.

(4) Balanced Incomplete Block Designs: The experimental units are grouped into b blocks of k < 1
units. The treatments are allocated so that each treatment is replicated the same number of times
and each treatment occurs in the same block with any other treatment the same number of times.
The treatments are allocated to units within blocks at random.

(5) Complete Factorial Experiments: If there are ¢ treatment combinations derived from the levels of
all factors then either there are no blocks or the blocks are of size ¢ units.

Other designs include: partially balanced incomplete block designs, split-plot designs, factorial designs
with confounding, and fractional factorial designs. For further information on these designs, see Cochran
and Cox [1], Davies [2] or John and Quenouille [4].

2.2 Analysis of Variance

The analysis of a designed experiment usually consists of two stages. The first is the computation of the
estimate of variance of the underlying random variation in the experiment along with tests for the overall
effect of treatments. This results in an analysis of variance (ANOVA) table. The second stage is a more
detailed examination of the effect of different treatments either by comparing the difference in treatment
means with an appropriate standard error or by the use of orthogonal contrasts.

The analysis assumes a linear model such as:
yij=pt+b+nte;

where y;; Is the observed value for unit j of block i, y is the overall mean, §; is the effect of the 7th block,
7, is the effect of the Ith treatment which has been applied to the unit, and e;; is the random error term

associated with this unit. The expected value of e;; is zero and its variance is 0.

In the analysis of variance, the total variation, measured by the sum of squares of observations about the
overall mean, is partitioned into the sum of squares due to blocks, the sum of squares due to treatments,
and a residual or error sum of squares. This partition corresponds to the parameters B, 7 and 0. In
parallel to the partition of the sum of squares there is a partition of the degrees of freedom associated
with the sums of squares. The total degrees of freedom is n — 1, where n is the number of observations.
This is partitioned into b — 1 degrees of freedom for blocks, t — 1 degrees of freedom for treatments, and
n—1t—b+ 1 degrees of freedom for the residual sum of squares. From these the mean squares can be
computed as the sums of squares divided by their degrees of freedom. The residual mean square is an
estimate of o2. An F-test for an overall effect of the treatments can be calculated as the ratio of the
treatment mean square to the residual mean square.

For row and column designs the model is:
Yij=pt+ptytnte;

where p; is the effect of the ith row and v; is the effect of the jth column. Usually the rows and columns
are orthogonal. In the analysis of variance the total variation is partitioned into rows, columns treatments
and residual.

In the case of factorial experiments, the treatment sum of squares and degrees of freedom may be
partitioned into main effects for the factors and interactions between factors. The main effect of a
factor is the effect of the factor averaged over all other factors. The interaction between two factors is
the additional effect of the combination of the two factors, over and above the additive effects of the two
factors, averaged over all other factors. For a factorial experiment in blocks with two factors, A and B,
in which the jth unit of the ith block received level I of factor A and level k of factor B the model is:

Yij = p+6i+(a(+ﬂk +aﬂlk)+ei.i

where o, is the main effect of level I of factor a, f; is the main effect of level k of factor B, and aff;
is the interaction between level [ of A and level k of B. Higher-order interactions can be defined in a
similar way.
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Once the signifcant treatment effects have been uncovered they can be further investigated by comparing
the differences between the means with the appropriate standard error. Some of the assumptions of the
analysis can be checked by examining the residuals.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The Chapter contains routines that can handle a wide range of experimental designs plus routines for
further analysis and a routine to compute dummy variables for use in a general linear model.

GO4BBF  computes the analysis of variance and treatment means with standard errors for any block
design with equal sized blocks. The routine will handle both complete block designs and
balanced and partially balanced incomplete block designs.

GO04BCF  computes the analysis of variance and treatment means with standard errors for a row and
column designs such as a Latin square.

GO4CAF computes the analysis of variance and treatment means with standard errors for a complete
factorial experiment.

Other designs can be analysed by combinations of calls to G04BBF, GO04BCF and G04CAF. The routines
compute the residuals from the model specified by the design, so these can then be input as the response
variable in a second call to one of the routines. For example a factorial experiment in a Latin square
design can be analysed by first calling GO4BCF to remove the row and column effects and then calling
GO4CAF with the residuals from GO04BCF as the response variable to compute the ANOVA for the
treatments. Another example would be to use both GO2DAF and G04BBF to compute an analysis of
covariance.

It is also possible to analyse factorial experiments in which some effects have been confounded with blocks
or some fractional factorial experiments. For examples see Morgan [6].

For experiments with missing values, these values can be estimated by using the Healy and Westmacott
procedure, see John and Quenouille [4]. This procedure involves starting with initial estimates for the

missing values and then making adjustments based on the residuals from the analysis. The improved
estimates are then used in further iterations of the process.

For designs that cannot be analysed by the above approach the routine GO4EAF can be used to compute
dummy variables from the classification variables or factors that define the design. These dummy variables
can then be used with the general linear model routine GO2DAF.

As well as the routines considered above the routine G04AGF computes the analysis of variance for a
two strata nested design.

In addition to the routines for computing the means and the basic analysis of variance two routines are
available for further analysis.

GO04DAF computes the sum of squares for a user defined contrast between means. For example, if
there are four treatments, the first is a control and the other three are different amounts of
a chemical the contrasts that are the difference between no chemical and chemical and the
linear effect of chemical could be defined. GO4DAF could be used to compute the sums of
squares for these contrasts from which the appropriate F-tests could be computed.

GO04DBF  computes simultaneous confidence intervals for the differences between means with the choice
of different methods such as the Tukey-Kramer, Bonferron and Dunn-Sidak.

4 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

GO04ADF GO4AEF GO4AFF

5 References

[1] Cochran W G and Cox G M (1957) Ezperimental Designs Wiley
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GO04AGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO4AGF performs an analysis of variance for a two-way hierarchical classification with
subgroups of possibly unequal size, and also computes the treatment group and subgroup means.
A fixed effects model is assumed.

2. Specification
SUBROUTINE GO4AGF (Y, N, K, LSUB, NOBS, L, NGP, GBAR, SGBAR, GM, SS,

1 IDF, F, FP, IFAIL)
INTEGER N, K, LSUB(K), NOBS(L), L, NGP(K), IDF(4), IFAIL
real Y(N), GBAR(K), SGBAR(L), GM, SS(4), F(2), FP(2)

3. Description
In a two-way hierarchical classification, there are k (= 2) treatment groups, the ith of which is
subdivided into /; treatment subgroups. The jth subgroup of group i contains n; observations,
which may be denoted by
Y 1Y 2ijre-sY ngije
The general observation is denoted by y,,;, being the mth observation in subgroup j of group i,
forlSiSk,lSjSl,-,lSmSn,-j.
The following quantities are computed:
(i) The subgroup means

(ii) The group means

(iii) The grand mean

k ng

EZZ)'.,..-,-

- _ i=ljElmel
Yy i

ii”ij

i=1 f=1
(iv) The number of observations in each group

’i
ni. = Zné"
1
(v) Sums of squares.

k
Between groups = SS, = Y, n,(§.-y.)*
i=1

£l
Between subgroups within groups = SS,, = XY, n;(J ;=7.)>

i=1 j=l
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k1 ony
Residual (within subgroups) = S5,,, = ¥, ¥ 3. (y—7,)°
i=1 j=l m=l
= §S,, — SS, - SS,,
k1 n;

Corrected total = SS,, = 3.3, Y, (Vpy;—5.)>

i=1 j=1 m=1
(vi) Degrees of freedom of variance components.
Between groups tk-1
Subgroups within groups : I — k
Residual tn—=1
Total tn-1

k
where = Y1,

i=1
k
n=3mn;
i=1
(vii) F ratios. These are the ratios of the group and subgroup mean squares to the residual
mean square.

Groups

F. = DBetween groups sum of squares/(k-1) _ SS,/(k-1)
! Residual sum of squares/(n—I) SS,./ (n=1)

Subgroups

_ Between subgroups (within group) sum of squares/(I-k) _ SS,/(I-k)
- Residual sum of squares/(n—I) ~ 88,/ (n=I)
If either F ratio exceeds 9999.0, the value 9999.0 is assigned instead.

(viii) F significances. The probability of obtaining a value from the appropriate F-distribution
which exceeds the computed mean square ratio.

Groups
Py = Prob(F iy uepy > Fy)
Subgroups
P2 = Prob(F gy (nty > F3)
where F, , denotes the central F-distribution with degrees of freedom v, and v, .

F,

If any F; = 9999.0, then p; is set to zero, i = 1,2,

4. References

[11 KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics.
Griffin, London, 3, pp. 34-35, 1976.

[2] MOORE, P.G., SHIRLEY, E.A. and EDWARD, D.E.
Standard Statistical Calculations.
Pitman, p. 31, 1972.
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S. Parameters
Y(N) - real array. Input
On entry: the elements of Y must contain the observations y,,; in the following order:
YurYaurrYa, 11 Y 112:Y21200 Y n 1200 5Y 101 oY myy 11y 0oV oY myijoerY skt re-2Y my by -
In words, the ordering is by group, and within each group is by subgroup, the members of
each subgroup being in consecutive locations in Y.
2: N - INTEGER. Input
On entry: the total number of observations, n.

3: K - INTEGER. Input
On entry: the number of groups, k.
Constraint: K 2 2.

4: LSUB(K) — INTEGER array. Input
On entry: the number of subgroups within group i, I, for i = 1,2,...k.
Constraint: LSUB(i) > O fori = 1,2,...,k.

5:  NOBS(L) — INTEGER array. Input
On entry: the numbers of observations in each subgroup, n;, in the following order:
n 11 ,n 12 ,...,n lll ,nzl ,...,nzlz ,...,nkl ,...,nk,.
k ]
Constraint: n = Y Y n;, thatis N = Y NOBS(i) and NOBS(i) > Ofori = 1,2,...1.
i=1 j=1 i=1
6: L — INTEGER. Input
On entry: the total number of subgroups, /.

k
Constraint: L = Y, LSUB(i).
i=1
7:  NGP(K) — INTEGER array. Output
On exit: the total number of observations in group i, n;, for i = 1,2,....,k.

8: GBAR(K) — real array. Output
On exit: the mean for group i, y,, for i = 1,2,...k.

9: SGBAR(L) — real array. Output
On exit: the subgroup means, y ;, in the following order:

YarYazreoYar, Y 20Y 2200Y 20y oY k1Y k2 reeerd iy

10: GM - real. Output
On exit: the grand mean, y .

11: SS(4) — real array. Output
On exit: contains the sums of squares for the analysis of variance, as follows;

SS(1) = Between group sum of squares, SS,,

SS(2) = Between subgroup within groups sum of squares, SS.,
SS(3) = Residual sum of squares, SS,,,,

SS(4) = Corrected total sum of squares, SS,,-
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12: IDF(4) — INTEGER array. Output

On exit: contains the degrees of freedom attributable to each sum of squares in the analysis
of variance, as follows;

IDF(1) = Degrees of freedom for between group sum of squares,
IDF(2) = Degrees of freedom for between subgroup within groups sum of squares,
IDF(3) = Degrees of freedom for residual sum of squares,
IDF(4) = Degrees of freedom for corrected total sum of squares.
13:  F(2) - real array. Output

On exit: contains the mean square ratios, F, and F,, for the between groups variation, and
the between subgroups within groups variation, with respect to the residual, respectively.

14:  FP(2) — real array. Output
On exit: contains the significances of the mean square ratios, p, and D, respectively.

15s: IFAIL — INTEGER. Input!/ Output

Onentry: IFAIL must be set to 0, ~1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1
On entry, K < 1.
IFAIL = 2

On entry, LSUB(i) < O for some i = 1,2,...,k.

IFAIL = 3

k
On entry, L. # Y LSUB(/)
i=1
IFAIL = 4
On entry, NOBS(i) < O for some i = 1,2,...,1.

IFAIL = 5

!
On entry, N # Y NOBS(i).
i=1
IFAIL = 6

The total corrected sum of squares is zero, indicating that all the data values are equal. The
means returned are therefore all equal, and the sums of squares are zero. No assignments are
made to IDF, F, and FP.

IFAIL = 7

The residual sum of squares is zero. This arises when either each subgroup contains exactly
one observation, or the observations within each subgroup are equal. The means, sums of
squares, and degrees of freedom are computed, but no assignments are made to F and FP,

7. Accuracy
The computations are believed to be stable.
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8.

9.1.

Further Comments

The time taken by the routine increases approximately linearly with the total number of
observations, n.

Example

The example below has two groups, the first of which consists of five subgroups, and the second
of three subgroups. The number of observations in each subgroup are not equal. The data
represent the percentage stretch in the length of samples of sack kraft drawn from consignments
(subgroups) received over two years (groups). For details see Moore et al. [2].

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO04AGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER K, LMAX, NMAX
PARAMETER (K=2, LMAX=8, NMAX=28)
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real GM
INTEGER 1, IFAIL, II, J, L, LI, N, NHI, NIJ, NLO, NSUB
* .. Local Arrays ..
real F(2), FP(2), GBAR(K), SGBAR(LMAX), SS(4), Y(NMAX)
INTEGER IDF(4), LSUB(K), NGP(K), NOBS ( LMAX)
* .. External Subroutines ..
EXTERNAL GO4AGF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO4AGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Data values’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Group Subgroup Observations’
LSUB(l1) = 5
LSUB(2) = 3
L = LSUB(1) + LSUB(2)
IF (L.LE.LMAX) THEN
READ (NIN,*) (NOBS(I),I=1,L)
N =20
DO 20I =1, L
N = N + NOBS(I)
20 CONTINUE
IF (N.LE.NMAX) THEN
READ (NIN,*) (Y(I),I=1,N)
IFAIL = 1
NSUB = 0
NLO = 1
DO 60 I =1, K
LI = LSUB(I)
DO 40 J =1, LI
NSUB = NSUB + 1
NIJ = NOBS(NSUB)
NHI = NLO + NIJ - 1
WRITE (NOUT,99999) I, J, (Y(II),II=NLO,NHI)
NLO = NLO + NIJ
40 CONTINUE
60 CONTINUE
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CALL GO4AGF(Y,N,K,LSUB,NOBS,L,NGP,GBAR,SGBAR,GM,SS,IDF,F,FP,
+ IFAIL)

IF (IFAIL.NE.O) THEN
WRITE (NOUT, %)
WRITE (NOUT,99997) ‘Failed in GO4AGF. IFAIL = ’, IFAIL
ELSE
WRITE (NOUT, %)
WRITE (NOUT, *) ’Subgroup means’
WRITE (NOUT, *)
WRITE (NOUT,*) ' Group Subgroup Mean’
II =0
DO 100 I =1, K
LT = LSUB(I)
DO 80 J =1, LI
IT = II + 1
WRITE (NOUT,99998) I, J, SGBAR(II)

80 CONTINUE
100 CONTINUE
WRITE (NOUT, *)
WRITE (NOUT,99996) Group 1 mean = ', GBAR(1),
+ ’ (", NGP(1l), ’ observations)’
WRITE (NOUT,99996) Group 2 mean = ’, GBAR(2),
+ ! (*, NGP(2), ' observations)’
WRITE (NOUT,99996) * Grand mean = ', GM, ' (', N,
+ ! observations)’

WRITE (NOUT, *)
WRITE (NOUT,*) ‘Analysis of variance table’
WRITE (NOUT, *)
WRITE (NOUT, *)
+ ’ Source Ss DF F ratio Sig’
WRITE (NOUT, *)
WRITE (NOUT,99995) ’‘Between groups r, S8(1),
+ IDF(1), F(l1), FP(1l)
WRITE (NOUT,99995) 'Bet sbgps within gps r, 8S8(2),
+ IDF(2), F(2), FP(2)
WRITE (NOUT, 99995) ’‘Residual r, SS(3),
+ IDF(3)
WRITE (NOUT, *)
WRITE (NOUT, 99995) ’Total *, Ss(4),
+ IDF(4)
END IF
END IF
END IF
STOP
*
99999 FORMAT (1X,I5,I9,4X,10F4.1)
99998 FORMAT (1X,16,I8,F10.2)
99997 FORMAT (1X,A,I2)
99996 FORMAT (1X,A,F4.2,A,I2,A)
99995 FORMAT (1X,A,F5.3,I5,F7.2,F8.3)
END

9.2. Program Data

GO4AGF Example Program Data
53332353
2.1 2.4 2.02.02.02.42.12.22.42.2
2.6 2.4 2.42.51.91.72.11.52.01.9
1.7 1.91.91.9 2.0 2.1 2.3
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9.3. Program Results
GO4AGF Example Program Results

Data values

Group Subgroup Observations

1 2.1 2.4 2.0 2.0 2.0
1 2 2.4 2.1 2.2

1 3 2.4 2.2 2.6

1 4 2.4 2.4 2.5

1 5 1.9 1.7

2 1 2.11.5 2.0

2 2 1.9 1.7 1.9 1.9 1.9
2 3 2.0 2.1 2.3

Subgroup means

Group Subgroup Mean
2.10
2.23
2.40
2.43
1.80
1.87
1.86
2.13

NN e e
WNROBWN R

Group 1 mean = 2.21 (16 observations)
Group 2 mean = 1.94 (11 observations)
Grand mean = 2.10 (27 observations)

Analysis of variance table

Source Ss DF F ratio 8Sig
Between groups 0.475 1 16.15 0.001
Bet sbgps within gps 0.816 6 4.63 0.005
Residual 0.559 19
Total 1.850 26
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GO04BBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO4BBF computes the analysis of variance and treament means and standard errors for a
randomized block or completely randomized design.

2. Specification
SUBROUTINE GO4BBF (N, Y, IBLOCK, NT, IT, GMEAN, BMEAN, TMEAN, TABLE,

1 LDT, C, LDC, IREP, R, EF, TOL, IRDF, WK, IFAIL)
INTEGER N, IBLOCK, NT, IT(*), LDT, LDC, IREP(NT), IRDF, IFAIL
real Y(N), GMEAN, BMEAN(*), TMEAN(NT), TABLE(LDT,5),

1 C(LDC,NT), R(N), EF (NT), TOL, WK(NT*NT+NT)

3. Description

In a completely randomized design the experimental material is divided into a number of units,
or plots, to which a treatment can be applied. In a randomized block design the units are grouped
into blocks so that the variation within blocks is less than the variation between blocks. If every
treatment is applied to one plot in each block it is a complete block design. If there are fewer
plots per block than treatments then the design will be an incomplete block design and may be
balanced or partially balanced.

For a completely randomized design, with ¢ treatments and n, plots per treatment, the linear
model is:

yi =M+ T +oe j=12.8 i=12.n,

where y; is the ith observation for the jth treatment, u is the overall mean, 7; is the effect of the
jth treatment and e;; is the random error term. For a randomised block design, with ¢ treatments
and b blocks of k plots, the linear model is:

Yip = H+ B+ 1 +e i=12.bj=12.. 1 =12,..¢,

where B, is the effect of the ith block and the ij(/) notation indicates that the /th treatment is
applied to the ith plot in the jth block.

The completely randomized design gives rise to a one-way analysis of variance. The treatments
do not have to be equally replicated, i.e. do not have to occur the same number of times. First the
overall mean, £, is computed and subtracted from the observations to give, y;; = y; — f. The
estimated treatment effects, i'j, are then computed as the treatment means of the mean adjusted
observations, y;;, and the treatment sum of squares can be computed from the sum of squares of
the treatment totals of the y;; divided by the number of observations per treatment total, n;. The
final residuals are computed as r; = y; — %j, and, from the residuals, the residual sum of
squares is calculated.

For the randomized block design the mean is computed and subtracted from the observations to
give, Yioy = Yiay — [i. The estimated block effects, ignoring treatment effects, B,-, are then
computed using the block means of the y;;,,, and the unadjusted sum of squares computed as the
sum of squared block totals for the yj, divided by number of plots per block, k. The block
adjusted observations are then computed as y“; ;) = Yiy — ﬁ,.. In the case of the complete block
design, with the same replication for each treatment within each block, the blocks and treatments
are orthogonal, and so the treatment effects are estimated as the treatment means of the block
adjusted observations, y’j,,. The treatment sum of squares is computed as the sum of squared
treatment totals of the y";, divided by the number of replicates to the treatments, r = bk/t.
Finally the residuals, and hence the residual sum of squares, are given by r;,, = ¥, — 7.
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For a design without the same replication for each treatment within each block the treatments and
the blocks will not be orthogonal, so the treatments adjusted for blocks need to be computed. The
adjusted treatment effects are found as the solution to the equations:

(R-NNT/k)% = ¢

where g is the vector of the treatment totals for block adjusted observations, ¥y » R is a diagonal
matrix with R, equal to the number of times the /th treatment is replicated, and N is the ¢ by b
incidence matrix, with N,; equal to the number of times treatment / occurs in block j. The
solution to the equations can be written as:

t=4Lq
where 2 is a generalized inverse of (R—NN”/k). The solution is found from the eigenvalue
decomposition of (R-NN”/k). The residuals are first calculated by subtracting the estimated
treatment effects from the block adjusted observations to give Ty = ¥iw — %. However,
since only the unadjusted block effects have been removed and blocks and treatments are not
orthogonal, the block means of the riay have to give the correct residuals, 7y and residual sum

of squares.

The mean squares are computed as the sum of squares divided by the degrees of freedom. The
degrees of freedom for the unadjusted blocks is b—1, for the completely randomised and the
complete block designs the degrees of freedom for the treatments is +~1. In the general case the
degrees of freedom for treatments is the rank of the matrix £2. The F-statistic given by the ratio
of the treatment mean square to the residual mean square tests the hypothesis:

Hy1,=17,=.=1 =0.

The standard errors for the difference in treatment effects, or treatment means, for the completely
randomized or the complete block designs, are given by:

1 1\,
where s? is the residual mean square and n; = n;, = b in the complete block design. In the
general case the variances of the treatment effects are given by:

var(7) = £2s?

from which the appropriate standard errors of the difference between treatment effects or the
difference between adjusted means can be calculated.

In the complete block design all the information on the treatment effects is given by the within
block analysis. In other designs there may be a loss of information due to the non-orthogonality
of treatments and blocks. The efficiency of the within block analysis in these cases is given by
the (canonical) efficiency factors, these are the non-zero eigenvalues of the matrix (R-NNT/k),
divided by the number of replicates in the case of equal replication, or by the mean of the number
of replicates in the unequally replicated case, see John [3]. If more than one eigenvalue is zero
then the design is said to be disconnected and some treatments can only be compared using a
between block analysis.

References

(1] COCHRAN, W.G. and COX, G.M.
Experimental Designs.
Wiley, 1957.

[2] DAVIS, O.L.(ed.)
The Design and Analysis of Industrial Experiments.
Longman, 1978.
[3] JOHN, J.A.
Cyclic Designs.
Chapman and Hall, 1987.
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[4] JOHN, J.A. and QUENOUILLE, M.H.
Experiments: Design and Analysis.
Charles Griffin, 1977.

[5] SEARLE, S.R.
Linear Models.
Wiley, 1971.

5. Parameters
N - INTEGER. Input
On entry: the number of observations.
Constraints: N 2 2 and if abs(IBLOCK) 2 2, N must be a multiple of abs(IBLOCK).

2 Y(N) - real array. Input
On entry: the observations in the order as described by IBLOCK and NT.

3:  IBLOCK - INTEGER. Input

On entry: IBLOCK indicates the block structure. If abs(IBLOCK) < 1 then there are no
blocks, i.e. it is a completely randomized design. If IBLOCK 2 2 then there are IBLOCK
blocks and the data should be input by blocks, i.e. Y must contain the observations for block
1 followed by the observations for block 2 etc. If IBLOCK < -2 then there are
abs (IBLOCK) blocks and the data is input in parallel with respect to blocks, i.e. Y (1) must
contain the first observation for block 1, Y(2) must contain the first observation for block
2 .. Y(abs(IBLOCK)) must contain the first observation for block abs(IBLOCK),
Y (abs (IBLOCK+1) ) must contain the second observation for block 1 etc.

4:  NT - INTEGER. Input
On entrv: the number of treatments. If only blocks are required in the analysis then set
NT = 1.

Constraint: if abs(IBLOCK) = 2, NT = 1, otherwise NT = 2.

5. IT(*) — INTEGER array. Input
Note: the dimension of the array IT must be at least N if NT > 2, and 1 otherwise.

Onentry: IT (i) indicates which of the NT treatments plot / received, for i = 1,2,.. N. If
NT = 1, IT is not referenced.

Constraint: 1 < IT(/) € NT, fori = 1,2,...,N.

6:  GMEAN - real. Output
On exit: the grand mean, .

7 BMEAN(*) - real array. Output
Note: the dimension of the array BMEAN must be at least max (1,abs(IBLOCK)).

Onexit: if abs(IBLOCK) 2 2, BMEAN(;) contains the mean for the jth block, /3’1 for
Jj=12..b.

8:  TMEAN(NT) - real array. Output

Onexit: if NT = 2, TMEAN(/) contains the (adjusted) mean for the /th treatment,
a* + 1, for I = 12,...t, where " is the mean of the treatment adjusted observations,

Yio — T
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9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

TABLE(LDT,5) - real array. Output

On exit: the analysis of variance table. Column 1 contains the degrees of freedom, column 2
the sum of squares, and where appropriate, column 3 the mean squares, column 4 the
F-statistic and column 5 the significance level of the F-—statistic. Row 1 is for Blocks, row
2 for Treatments, row 3 for Residual and row 4 for Total. Mean squares are computed for all
but the Total row; F-statistics and significance are computed for Treatments and Blocks, if
present. Any unfilled cells are set to zero.

LDT - INTEGER. Input

On entry: the first dimension of the array TABLE as declared in the (sub)program from
which GO4BBF is called.

Constraint: LDT 2 4.

C(LDC,NT) - real array. Output

Onexit: if NT 2 2, the upper triangular part of C contains the variance-covariance matrix
of the treatment effects, the strictly lower triangular part contains the standard errors of the
difference between two treatment effects (means), i.e. C(ij) contains the covariance of
treatment / and j if j 2 i and the standard error of the difference between treatment / and /
ifj <ifori=12..)]=12,...1

LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
GO4BBEF is called.

Constraint: LDC > NT.

IREP(NT) — INTEGER array. Output
Onexit: if NT 2 2, the treatment replications, R, for / = 1,2,..,NT.

R(N) - real array. Output
On exit: the residuals, r,, fori = 1,2,...N.

EF(NT) - real array. Output
Onexit: if NT 2 2, the canonical efficiency factors.

TOL - real. Input

Onentry: the tolerance value used to check for zero eigenvalues of the matrix £. If
TOL = 0.0 a default value of 107 is used.

Constraint: TOL = 0.0.

IRDF - INTEGER. Input

Onentry: an adjustment to the degrees of freedom for the residual and total. If IRDF 2 1
the degrees of freedom for the total is set to N — IRDF and the residual degrees of freedom
adjusted accordingly. If IRDF = 0, the total degrees of freedom for the total is set to N — 1,
as usual.

Constraint: IRDF = 0.

WK (NT*NT+NT) - real array. Workspace

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter
should refer to Chapter P01 for details.

Onexit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
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For this routine, because the values of output parameters may be useful even if IFAIL # 0
on exit, users are recommended to set IFAIL to —1 before entry. It is then essential to test
the value of IFAIL on exit.

Error Indicators and Warnings
Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, N < 2,

or NT < 0,

or NT = 1 and abs(IBLOCK) < 1,

or LDT < 4,

or LDC < NT,

or TOL < 0.0,

or IRDF < 0.
IFAIL =2

On entry, abs(IBLOCK) 2 2 and N is not a multiple of abs(IBLOCK).
IFAIL = 3

On entry, IT(i) < 1 or IT(i) > NT for some { when NT 2 2,

or no value of IT = j for some j = 1,2,...,NT, when NT 2 2.
IFAIL = 4

On entry, the values of Y are constant.

IFAIL = 5

A computed standard error is zero due to rounding errors, or the eigenvalue computation
failed to converge. Both are unlikely error exits.

IFAIL = 6

The treatments are totally confounded with blocks, so the treatment sum of squares and
degrees of freedom are zero. The analysis of variance table is not computed, except for
block and total sums of squares and degrees of freedom.

IFAIL = 7

The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and
5 of the analysis of variance table will not be computed and the matrix of standard errors
and covariances, C, will not be scaled by s or s2.

IFAIL = 8
The design is disconnected; the standard errors may not be valid. The design may be nested.

Accuracy

The algorithm used by this routine, described in Section 3, achieves greater accuracy than the
traditional algorithms based on the subtraction of sums of squares.

Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used,
see [4]. This is an iterative procedure in which estimates of the missing values are adjusted by
subtracting the corresponding values of the residuals. The new estimates are then used in the
analysis of variance. This process is repeated until convergence. A suitable initial value may be
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9.1.

the grand mean fI. When using this procedure IRDF should be set to the number of missing
values plus one to obtain the correct degrees of freedom for the residual sum of squares.

For designs such as Latin squares one more of the blocking factors has to be removed in a
preliminary analysis before the final analysis using extra calls to GO4BBF. The residuals from
the preliminary analysis are then input to GO4CBF. In these cases IRDF should be set to the
difference between N and the residual degrees of freedom from preliminary analysis. Care should
be taken when using this approach as there is no check on the orthogonality of the two analyses.

For analysis of covariance the residuals are obtained from an analysis of variance of both the
response variable and the covariates. The residuals from the response variable are then regressed
on the residuals from the covariates using, say, GO2CBF or GO2DAF. The results from those
routines can be used to test for the significance of the covariates. To test the significance of the
treatment effects after fitting the covariate, the residual sum of squares from the regression
should be compared with the residual sum of squares obtained from the equivalent regression but
using the residuals from fitting blocks only.

Example

The data, given by John and Quenouille [4], are for a balanced incomplete block design with 10
blocks and 6 treatments and with 3 plots per block. The observations are the degree of pain
experienced and the treatments are penicillin of different potency. The data is input and the
analysis of variance table and treatment means are printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO4BBF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, NTMAX, NBMAX, TMAX
PARAMETER (NMAX=30, NTMAX=6, NBMAX=10, TMAX=4)
* .. Local Scalars ..
real GMEAN, TOL
INTEGER I, IFAIL, IRDF, J, N, NBLOCK, NT
* .. Local Arrays ..
real BMEAN (NBMAX), C(NTMAX,NTMAX), EF(NTMAX), R(NMAX),
+ TABLE (TMAX, 5), TMEAN(NTMAX),
+ WK (NTMAX*NTMAX+NTMAX), Y(NMAX)
INTEGER IREP (NTMAX), IT(NMAX)
* .. External Subroutines
EXTERNAL GO4BBF
* .. Executable Statements ..
WRITE (NOUT,FMT=*) ‘GO4BBF Example Program Results’
* Skip heading in data file

READ (NIN,FMT=+)
READ (NIN,FMT=*) N, NT, NBLOCK
IF (N.LE.NMAX) THEN
READ (NIN,FMT=x) (Y(I),I=1,N)
READ (NIN,FMT=x) (IT(I),I=1,N)
TOL = 0.000005€0
IRDF = 0
IFAIL = -1

CALL GO4BBF(N,Y,NBLOCK,NT, IT, GMEAN, BMEAN, TMEAN, TABLE, TMAX, C,
+ NTMAX, IREP, R, EF, TOL, IRDF, WK, IFAIL)

WRITE (NOUT, FMT=x)

WRITE (NOUT,FMT=x) ’ ANOVA table’

WRITE (NOUT, FMT=x)

WRITE (NOUT, FMT=x)
+ ! Source df SS MS F’,
+ 4 Prob’
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GO04BBF

(TABLE(1,J),J=1,5)
(TABLE(2,J),J=1,5)
(TABLE(3,J),J=1, 3)
(TABLE(4,J),J=1,2)

GMEAN

WRITE (NOUT,FMT=x)
WRITE (NOUT,FMT=99998) ’ Blocks ’r,
WRITE (NOUT,FMT=99998) ’ Treatments ',
WRITE (NOUT,FMT=99998) ’ Residual r,
WRITE (NOUT,FMT=99998) ’ Total .,
WRITE (NOUT, FMT=x*)
WRITE (NOUT,FMT=x) ’ Efficiency Factors’
WRITE (NOUT,FMT=x)
WRITE (NOUT,FMT=99999) (EF(I),I=1,NT)
WRITE (NOUT, FMT=x*)
WRITE (NOUT,FMT=99997) / Grand Mean’,
WRITE (NOUT,FMT=%*)
WRITE (NOUT,FMT=*) ' Treatment Means’
WRITE (NOUT,FMT=%*)
WRITE (NOUT,FMT=99999) (TMEAN(I),I=1,NT)
WRITE (NOUT,FMT=x)
WRITE (NOUT,FMT=%*)

+ ! Standard errors of differences between means’

WRITE (NOUT, FMT=x)
DO 20 I = 2, NT

WRITE (NOUT,FMT=99999)

(C(1,J),J=1,I-1)

20 CONTINUE
END IF
STOP
*
99999 FORMAT (8F10.2)
99998 FORMAT (A,3X,F3.0,2X,3(F10.2,2X),F9.4)
99997 FORMAT (A,F10.2)
END
9.2. Program Data
GO04BBF Example Program Data
30 6 10 ¢ N, NT, IBLOCK
154
5 10 6
2 93
4 86
247
6 75
57 2
72 4
8 4 2
10 8 7 Y
123
124
135
146
156
236
245
256
345
346 IT
9.3. Program Results
GO4BBF Example Program Results
ANOVA table
Source df Ss MS F Prob
Blocks 9. 60.00 6.67 4.79 0.0039
Treatments 5. 101.78 20.36 14.62 0.0000
Residual 15. 20.89 1.39
Total 29. 182.67
[NP2478/16]
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Efficiency Factors

0.00 0.

Grand Mean

Treatment Means
2.50 7

Standard errors

0.83
0.83
0.83
0.83
0.83

OO OO

80 0.80 0.80 0.80
5.33
.25 8.08 5.92 2.92

of differences between means

.83

.83 0.83

.83 0.83 0.83

.83 0.83 0.83 0.83
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GO04BCF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO04BCF computes the analysis of variance for a general row and column design together with the
treatment means and standard errors.

2 Specification

SUBROUTINE GO4BCF(NREP, NROW, NCOL, Y, NT, IT, GMEAN, TMEAN,

1 TABLE, LDT, C, LDC, IREP, RPMEAN, RMEAN, CMEAN,
2 R, EF, TOL, IRDF, WK, IFAIL)

INTEGER NREP, NROW, NCOL, NT, IT(*), LDT, LDC, IREP(NT),
1 IRDF, IFAIL

real Y(NREP*NROW*NCOL), GMEAN, TMEAN(NT),

1 TABLE(LDT,5), C(LDC,NT), RPMEAN(NREP),
2 RMEAN (NREP*NROW) , CMEAN(NREP*NCOL),
3 R(NREP*NROW*NCOL), EF(NT), TOL, WK(3*NT)

3 Description

In a row and column design the experimental material can be characterized by a two-way classification,
nominally called rows and columns. Each experimental unit can be considered as being located in a
particular row and column. It is assumed that all rows are of the same length and all columns are of
the same length. Sets of equal numbers of rows/columns can be grouped together to form replicates,
sometimes known as squares or rectangles, as appropriate.

If for a replicate, the number of rows, the number of columns and the number of treatments are equal
and every treatment occurs once in each row and each column then the design is a Latin square. If this
is not the case the treatments will be non-orthogonal to rows and columns. For example in the case of a
lattice square each treatment occurs only once in each square.

For a row and column design, with ¢ treatments in r rows and ¢ columns and b replicates or squares with
n = brc observations the linear model is:

Yijry =+ B+ pj + 1 + 7+ €45

i=1,2...0;j=1,2,...,rk=012...,¢; 1 =1,2,. .,t,whereﬂlstheeﬁ'ectofthezthrephcatep
is the eﬂ"ect of the jth row, v, is the effect of the kth column and the ¢jk(l) notation indicates that the
ith treatment is applied to the unit in row j, column k of replicate <.

To compute the analysis of variance for a row and column design the mean is computed and subtracted
from the observations to give, y;j k() = Yijka) — K- Since the replicates, rows and columns are orthogonal
the estimated effects, ignoring treatment effects, ,3,., Pj» Yk, can be computed using the appropriate means
of the ygj k(1) and the unadjusted sum of squares computed as the appropriate sum of squared totals for
the yﬁj k@ divided by number of units per total. The observations adjusted for replicates, rows and
columns can then be computed by subtracting the estimated effects from y;; k(1) to give Yi; k(1)-

In the case of a Latin square design the treatments are orthogonal to replicates, rows and columns and so
the treatment effects, 7, can be estimated as the treatment means of the adjusted observations, y:_;k(,)
The treatment sum of squares is computed as the sum of squared treatment totals of the y, ) divided
by the number of times each treatment is rephcated Finally the residuals, and hence the reSJdual sum
of squares, are given by, r;;) = y,J(,)

For a design which is not orthogonal, for example a lattice square or an incomplete latin square, the
treatment effects adjusted for replicates, rows and columns need to be computed. The adjusted treatment
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effects are found as the solution to the equations:
AT = (R = NyNy [(re) = N N [(be) = NN /(br))7 = q

where ¢ is the vector of the treatment totals of the observations adjusted for replicates, rows and columns,
ka(l)» R is a diagonal matrix with R}; equal to the number of times the {th treatment is replicated, and
Nb is the ¢ by b incidence matrix, with N;; equal to the number of times treatment [ occurs in replicate
i, with N, and N, being similarly defined for rows and columns. The solution to the equations can be
written as:

T=Qq

where, 0 is a generalized inverse of A. The solution is found from the eigenvalue decomposition of A. The
residuals are first calculated by subtracting the estimated adjusted treatment effects from the adjusted
observations to give rfj(,) = yi}(,) — 7,. However, since only the unadjusted replicate, row and column
effects have been removed and they are not orthogonal to treatments, the replicate, row and column
means of the 7';]'(1) have to be subtracted to give the correct residuals, r;; ;) and residual sum of squares.

Given the sums of squares, the mean squares are computed as the sums of squares divided by the degrees
of freedom. The degrees of freedom for the unadjusted replicates, rows and columns are b — 1, » — 1 and
¢ — 1 respectively and for the Latin square designs the degrees of freedom for the treatments is ¢t — 1. In
the general case the degrees of freedom for treatments is the rank of the matrix Q. The F-statistic given
by the ratio of the treatment mean square to the residual mean square tests the hypothesis:

Hy:rm=r=...=7,=0.

The standard errors for the difference in treatment effects, or treatment means, for Latin square designs,

are given by:
se(T; — 7;,) = /2s2/(bt)

where s? is the residual mean square. In the general case the variances of the treatment effects are given
by:
Var(7) = Qs?

from which the appropriate standard errors of the difference between treatment effects or the difference
between adjusted means can be calculated.

The analysis of a row-column design can be considered as consisting of different strata: the replicate
stratum, the rows within replicate and the columns within replicate strata and the units stratum. In the
Latin square design all the information on the treatment effects is given at the units stratum. In other
designs there may be a loss of information due to the non-orthogonality of treatments and replicates,
rows and columns and information on treatments may be available in higher strata. The efficiency of
the estimation at the units stratum is given by the (canonical) efficiency factors, these are the non-zero
eigenvalues of the matrix, A, divided by the number of replicates in the case of equal replication, or
by the mean of the number of replicates in the unequally replicated case, see John [3]. If more than
one eigenvalue is zero then the design is said to be disconnected and information on some treatment
comparisons can only be obtained from higher strata.

4 References
[1] Cochran W G and Cox G M (1957) Ezperimental Designs Wiley
[2] Davis O L (1978) The Design and Analysis of Industrial Ezperiments Longman
[3] John J A (1987) Cyclic Designs Chapman and Hall
[4] John J A and Quenouille M H (1977) Ezperiments: Design and Analysis Griffin

[5] Searle S R (1971) Linear Models Wiley
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10:

Parameters

NREP — INTEGER Input
On entry: the number of replicates, b.

Constraint: NREP > 1.

NROW — INTEGER Input
On entry: the number of rows per replicate, r.

Constraint: NROW > 2.

NCOL — INTEGER Input

On entry: the number of columns per replicate, c.

Constraint: NCOL > 2.

Y(NREP*NROW*NCOL) — real array Input

On entry: the n = brc observations ordered by columns within rows within replicates. That is
Y(re(i — 1) + r(j — 1) + k) contains the observation from the k column of the jth row of the ith
replicate fort = 1,2,...,b; j=1,2...,r; k=1,2,...,c

NT — INTEGER Input

On entry: the number of treatments. If only replicates, rows and columns are required in the
analysis then set NT = 1.

Constraint: NT > 1.

IT(*) — INTEGER array Input

Note: the dimension of the array IT must be at least NREP*NROW*NCOL if NT > 1, and 1
otherwise.

On entry: if NT > 1, T(7) indicates which of the NT treatments unit ¢ received, fori =1,2,...,n.
If NT =1, IT is not referenced.

Constraint: if NT > 2,1 <IT(#) < NT,fori=1,2,...,n.

GMEAN — real Output

On exit: the grand mean, fi.

TMEAN(NT) — real array Output
On exit: if NT > 2, TMEAN(!) contains the (adjusted) mean for the Ith treatment, g* + #,, for
1=1,2,...,t, where " is the mean of the treatment adjusted observations y;;; ) — 7;. Otherwise

TMEAN is not referenced.

TABLE(LDT,5) — real array Output

On ezit: the analysis of variance table. Column 1 contains the degrees of freedom, column 2 the
sum of squares, and where appropriate, column 3 the mean squares, column 4 the F-statistic and
column 5 the significance level of the F-statistic. Row 1 is for replicates, row 2 for rows, row 3 for
columns, row 4 for treatments (if NT > 1), row 5 for residual and row 6 for total. Mean squares
are computed for all but the total row, F-statistics and significance are computed for treatments,
replicates, rows and columns. Any unfilled cells are set to zero.

LDT — INTEGER Input

On entry: the first dimension of the array TABLE as declared in the (sub)program from which
GO4BCF is called.

Constraint: LDT > 6.
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11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:
22:

C(LDC,NT) — real array Output

On exit: the upper triangular part of C contains the variance-covariance matrix of the treatment
effects, the strictly lower triangular part contains the standard errors of the difference between two
treatment effects (means), i.e., C(3, j) contains the covariance of treatment i and j if j > i and the
standard error of the difference between treatment ¢ and jif j<ifori=1,2,...,¢;5=1,2,..., 1.
LDC — INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which G04BCF
is called.

Constraint: LDC > NT.

IREP(NT) — INTEGER array Output
On exit: if NT > 1, the treatment replications, Ry, for [ = 1,2,...,NT. Otherwise IREP is not
referenced.

RPMEAN(NREP) — real array Output
On exit: if NREP > 1, RPMEAN() contains the mean for the ith replicate, ;2—{-31- fori=1,2,...,b.
Otherwise RPMEAN is not referenced.

RMEAN(NREP*NROW) — real array Output
On exit: RMEAN(j) contains the mean for the jth row, g+ p, for j =1,2,... r.

CMEAN(NREP*NCOL) — real array Output
On erit: CMEAN(k) contains the mean for the kth column, g+ 4, for k =1,2,...,c.

R(NREP*NROW*NCOL) — real array Output
On exit: the residuals, r; for 1 =1,2,... n.
EF(NT) — real array Output

On exit: if NT > 2, the canonical efficiency factors. Otherwise EF is not referenced.

TOL — real Input

On entry: the tolerance value used to check for zero eigenvalues of the matrix 2. If TOL = 0.0 a
default value of 0.00001 is used.

Constraint: TOL > 0.0

IRDF — INTEGER Input

On entry: an adjustment to the degrees of freedom for the residual and total. If IRDF > 1 the
degrees of freedom for the total is set to n — IRDF and the residual degrees of freedom adjusted
accordingly. If IRDF = 0, the total degrees of freedom for the total is set to n — 1, as usual.

Constraint: IRDF > 0.

WK(3*NT) — real array Workspace
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On ezit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL # 0 on exit,

users are recommended to set IFAIL to —1 before entry. It is then essential to test the value of
IFAIL on exit.
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6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit

(as defined by X04AAF).

Errors or warnings specified by the routine:
IFAIL=1

On entry, NREP < 1,
or NROW < 2,
or NCOL < 2,
or NT < 1,
or LDT < 6,
or LDC < NT,
or TOL < 0.0,
or IRDF < 0.

IFAIL=2

On entry, IT(:) < 1 or IT(7) > NT for some ¢ when NT > 2,
or no value of IT = j for some j = 1,2,...,NT, when NT > 2.

IFAIL=3
On entry, the values of Y are constant.

IFAIL= 4

A computed standard error is zero due to rounding errors, or the eigenvalue computation failed to
converge. Both are unlikely error exits.

IFAIL=5

The treatments are totally confounded with replicates, rows and columns, so the treatment sum
of squares and degrees of freedom are zero. The analysis of variance table is not computed, except
for replicate, row, column and total sums of squares and degrees of freedom.

IFAIL=6

The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and 5 of the
analysis of variance table will not be computed and the matrix of standard errors and covariances,

C, will not be scaled by s or s2.

IFAIL="7

The design is disconnected, the standard errors may not be valid. The design may have a nested
structure.

7 Accuracy

The algorithm used in this routine, described in Section 3, achieves greater accuracy than the traditional
algorithms based on the subtraction of sums of squares.

8 Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used, see [4].
This is an iterative procedure in which estimates of the missing values are adjusted by subtracting the
corresponding values of the residuals. The new estimates are then used in the analysis of variance. This
process is repeated until convergence. A suitable initial value may be the grand mean. When using this
procedure IRDF should be set to the number of missing values plus one to obtain the correct degrees of
freedom for the residual sum of squares.
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For analysis of covariance the residuals are obtained from an analysis of variance of both the response
variable and the covariates. The residuals from the response variable are then regressed on the residuals
from the covariates using, say, GO2CBF or GO2DAF. The results from those routines can be used to test
for the significance of the covariates. To test the significance of the treatment effects after fitting the
covariate, the residual sum of squares from the regression should be compared with the residual sum of
squares obtained from the equivalent regression but using the residuals from fitting replicates, rows and
columns only.

9 Example

The data for a 5 x 5 Latin square is input and the ANOVA and treatment means computed and printed.
Since the design is orthogonal only one standard error need be printed

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO4BCF Example Program Text
Mark 17 Release. NAG Copyright 1995.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NTMAX, NBMAX
PARAMETER (NMAX=25,NTMAX=5,NBMAX=5)
* .. Local Scalars ..
real GMEAN
INTEGER I, IFAIL, J, N, NCOL, NREP, NROW, NT
* .. Local Arrays ..
real C(NTMAX,NTMAX), CMEAN(NBMAX), EF(NTMAX), R(NMAX),
+ RMEAN(NBMAX), RPMEAN(NBMAX), TABLE(6,5),
+ TMEAN(NTMAX), WK(3*NTMAX), Y(NMAX)
INTEGER IREP(NTMAX), IT(NMAX)
* .. External Subroutines ..
EXTERNAL GO4BCF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO4BCF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) NREP, NROW, NCOL, NT
IF (NROW.LE.NBMAX .AND. NCOL.LE.NBMAX .AND. NT.LE.NTMAX) THEN
N = NREP*NROW*NCOL
READ (NIN,*) (Y(I),I=1,N)
READ (NIN,*) (IT(I),I=1,N)
IFAIL = -1

CALL GO4BCF(NREP,NROW,NCOL,Y,NT,IT,GMEAN,TMEAN,TABLE,6,C,NTMAX,
+ IREP,RPMEAN,RMEAN,CMEAN,R,EF,0.00001e0,0,WK,IFAIL)

WRITE (NOUT,*)

WRITE (NOUT,*) ’ ANOVA TABLE’
WRITE (NOUT,*)

IF (NREP.GT.1) THEN

WRITE (NOUT,99998) ’ Reps *, (TABLE(1,7J),J=1,5)
END IF
WRITE (NOUT,99998) ’ Rows * (TABLE(2,J),J=1,5)
WRITE (NOUT,99998) ’ Columns . (TABLE(3,7J),J=1,5)

WRITE (NOUT,99998) ’ Treatments °’, (TABLE(4,J),J=1,5)
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+

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

, C

END IF

ST
*

0)

(NOUT,99998) ’ Residual >, (TABLE(5,J1),J=1,3)
(NOUT,99998) ’ Total ’, (TABLE(NOUT,J),J=1,2)
(NOUT, *)

(NOUT,*) ’ Treatment means’

(NOUT, *)

(NOUT,99999) (TMEAN(I),I=1,NT)

(NOUT, *)

(NOUT,99997) * S.E. of difference (orthogonal design) = ’

(2,1)

99999 FORMAT (8F10.4)
99998 FORMAT (A,F3.0,2X,3(F10.4,2X),F8.4)
99997 FORMAT (A,F10.4)

EN

D

9.2 Example Data

GO4BCF Example Program Data

1565

9a]

.67
.40
.32
.92
.88

N
[o N Be (Y SN

D= W N O
= W N O
W N e

.15
77
.53
.00
.16

~N ~N 0

N O Ww
T = W N

.29 8.95 9.62
.40 7.54 6.93
.50 9.99 9.68
.29 7.85 7.08
.83 5.38 8.51

9.3 Example Results

GO4BCF Example Program Results

ANOVA

Rows
Columns
Treatme

TABLE

nts

Residual 1

Total

2

4. 29.4231 7.3558 9.0266 0.0013
4. 22.9950 5.7487 7.0545 0.0037
4. 0.5423 0.1356 0.1664 0.9514
2. 9.7788 0.8149

4. 62.7392

Treatment means

7.31

80

7.2440 7.2060 6.9000 7.2600

S.E. of difference (orthogonal design) = 0.5709
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GO04CAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GO4CAF computes an analysis of variance table and treatment means for a complete factorial
design.

Specification
SUBROUTINE GOA4CAF (N, Y, NFAC, LFAC, NBLOCK, INTER, IRDF,
1 MTERM, TABLE, ITOTAL, TMEAN, MAXT, E,
2 IMEAN, SEMEAN, BMEAN, R, IWK, IFAIL)
INTEGER N, NFAC, LFAC(NFAC), NBLOCK, INTER, IRDF, MTERM,
1 ITOTAL, MAXT, IMEAN(MTERM), IWK(N+3*NFAC), IFAIL
real Y(N), TABLE (MTERM, 5), TMEAN(MAXT), E(MAXT),
1 SEMEAN (MTERM), BMEAN(NBLOCK+1), R(N)
Description

An experiment consists of a collection of units, or plots, to which a number of treatments are
applied. In a factorial experiment the effects of several different sets of conditions are compared,
e.g. three different temperatures, T, T, and T,, and two different pressures, P, and P,. The
conditions are known as factors and the different values the conditions take are known as levels.
In a factorial experiment the experimental treatments are the combinations of all the different
levels of all factors. e.g.,

TI‘P 1 TZP 1 T3P 1

TIP 2 TZP 2 TSP 2
The effect of a factor averaged over all other factors is known as a main effect and the effect of
a combination of some of the factors averaged over all other factors is known as an interaction.
This can be represented by a linear model. In the above example if the response was y;, for the
kth replicate of the ith level of T and the jth level of P the linear model would be:

Yug =B+ +p+ Y e
where u is the overall mean, ¢, is the main effect of T, p; is the main effect of P, y; is the TxP
interaction and e is the random error term. In order to find unique estimates constraints are
placed on the parameters estimates. For the example here these are:

3 2 3 2
2t,=0, ¥p, =0, 39, =0forj =12 and Y P, =0fori = 123,
im] sl i=1 j=1

where * denotes the estimate.

If there is variation in the experimental conditions, e.g. in an experiment on the production of a
material different batches of raw material may be used, or the experiment may be carried out on
different days, then plots that are similar are grouped together into blocks. For a balanced
complete factorial experiment all the treatment combinations occur the same number of times in
each block.

GO4CAF computes the analysis of variance (ANOVA) table by sequentially computing the totals
and means for an effect from the residuals computed when previous effects have been removed.
The effect sum of squares is the sum of squared totals divided by the number of observations per
total. The means are then subtracted from the residuals to compute a new set of residuals. At the
same time the means for the original data are computed. When all effects are removed the
residual sum of squares is computed from the residuals. Given the sums of squares an ANOVA
table is then computed along with standard errors for the difference in treatment means.

The data for GO4CAF has to be in standard order given by the order of the factors. Let there be
k factors, f,, f,,...f, in that order with levels I, /,,...,/, respectively. Standard order requires the
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levels of factor f, are in order 1,2,...,/, and within each level of f, the levels of f, are in order
1,2,...,/, and so on.

For an experiment with blocks the data is for block 1 then for block 2 etc. Within each block the
data must be arranged so that the levels of factor f, are in order 1,2,...,/, and within each level of
f, the levels of f, are in order 1,2,...,/, and so on. Any within block replication of treatment
combinations must occur within the levels of f;.

The ANOVA table is given in the following order. For a complete factorial experiment the first
row is for blocks, if present, then the main effects of the factors in their order, e.g. f, followed by
f> etc. These are then followed by all the two factor interactions then all the three factor
interactions etc. The last two rows being for the residual and total sums of squares. The
interactions are arranged in lexical order for the given order. For example, for the three factor
interactions for a five factor experiment the 10 interactions would be in the following order:

fifofs
fifof s
fifofs
fifafs
fifafs
fifufs
fofafs
fafofs
Fofofs
frfofs

4. References

[1] COCHRAN, W.G. and COX, G.M.
Experimental Designs.
Wiley, 1957.

[2] DAVIS, O.L.(ed.)
The Design and Analysis of Industrial Experiments.
Longman, 1978.

[3] JOHN, J.A. and QUENOUILLE, M.H.
Experiments: Design and Analysis.
Charles Griffin, 1977.

5. Parameters
1: N - INTEGER. Input
On entry: the number of observations.

Constraints: N 2 4.
N must be a multiple of NBLOCK if NBLOCK > 1.
N must be a multiple of the number of treatment combinations, that is a
k

multiple of J[] LFAC (k).
i=1
2:  Y(N) - real array. Input
On entry: the observations in standard order, see Section 3.

3: NFAC - INTEGER. Input
On entry: the number of factors, k.
Constraint: NFAC 2 1.
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4:

LFAC(NFAC) - INTEGER array. Input
On entry: LFAC(i) must contain the number of levels for the ith factor, i = 1,2,....,k.
Constraint: LFAC(i) 2 2fori = 1,2,....,k.

NBLOCK - INTEGER. Input
On entry: the number of blocks. If there are no blocks, set NBLOCK = 0 or 1.

Constraints: NBLOCK 2 0.
If NBLOCK 2 2, N/NBLOCK must be a multiple of the number of treatment
k

combinations, that is a multiple of [] LFAC(k).
=]

INTER - INTEGER. Input

On entry: the maximum number of factors in an interaction term. If no interaction terms are
to be computed, set INTER = 0 or 1.

Constraint: 0 £ INTER < NFAC.

IRDF — INTEGER. Input

On entry: the adjustment to the residual and total degrees of freedom. The total degrees of
freedom are set to N — IRDF and the residual degrees of freedom adjusted accordingly. For
examples of the use of IRDF see Section 8.

Constraint: IRDF 2 0.

MTERM - INTEGER. Input
On entry. the maximum number of terms in the analysis of variance table, see Section 8.

Constraint: MTERM must be large enough to contain the terms specified by NFAC, INTER
and NBLOCK. If the routine exits with IFAIL 2 2, the required minimum value of
MTERM is returned in ITOTAL.

TABLE(MTERM,5) — real array. Output

On exit: the first ITOTAL rows of TABLE contain the analysis of variance table. The first
column contains the degrees of freedom, the second column contains the sum of squares, the
third column (except for the row corresponding to the total sum of squares) contains the
mean squares, i.e. the sums of squares divided by the degrees of freedom, and the fourth and
fifth columns contain the F ratio and significance level, respectively (except for rows
corresponding to the total sum of squares, and the residual sum of squares). All other cells
of the table are set to zero.

The first row corresponds to the blocks and is set to zero if there are no blocks. The
ITOTALth row corresponds to the total sum of squares for Y and the (ITOTAL~1)th row
corresponds to the residual sum of squares. The central rows of the table correspond to the
main effects followed by the interaction if specified by INTER. The main effects are in the
order specified by LFAC and the interactions are in lexical order, see Section 3.

10: ITOTAL - INTEGER. Output

11:

Onexit: the row in TABLE corresponding to the total sum of squares. The number of
treatment effects is ITOTAL - 3.

TMEAN(MAXT) — real array. Output

On exit: the treatment means. The position of the means for an effect is given by the index
in IMEAN. For a given effect the means are in standard order, see Section 3.
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12:

13:

14:

15:

16:

17:

18:

19:

MAXT - INTEGER. Input

On entry: the maximum number of treatment means to be computed, see Section 8. If the
value of MAXT is too small for the required analysis then the minimum number is returned
in IMEAN(1).

Constraint: MAXT must be large enough for the number of means specified by LFAC and
k

INTER; if INTER = NFAC then MAXT 2 [] (LFAC(i)+1) - 1.
=1

E(MAXT) - real array. Output
On exit: the estimated effects in the same order as for the means in TMEAN.

IMEAN(MTERM) — INTEGER array. Output

Onexit: indicates the position of the effect means in TMEAN. The effect means
corresponding to the first treatment effect in the ANOVA table are stored in TMEAN(1) up
to TMEAN(IMEAN(1)). Other effect means corresponding to the ith treatment effect,
i =12,.,JITOTAL-3, are stored in TMEAN(IMEAN(-1)+1) up to
TMEAN (IMEAN(i)).

SEMEAN(MTERM) - real array. Output

Onexit: the standard error of the difference between means corresponding to the ith
treatment effect in the ANOVA table.

BMEAN(NBLOCK+1) — real array. Output

Onexit: BMEAN(1) contains the grand mean, if NBLOCK > 1, BMEAN(2) up to
BMEAN(NBLOCK+1) contain the block means.

R(N) — real array. Output
On exit: the residuals.

IWK (N+3*NFAC) — INTEGER array. Workspace

IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 4,
or NFAC < 1,
or NBLOCK < 0,
or INTER < 0,
or INTER > NFAC,
or IRDF < 0.
IFAIL = 2
On entry, LFAC(i) < 1, for some i = 1,2,...,NFAC,
or the value of MAXT is too small,
or the value of MTERM is too small,
or NBLOCK > 1 and N is not a multiple of NBLOCK,
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or the number of plots per block is not a multiple of the number of treatment
combinations.

IFAIL = 3
On entry, the values of Y are constant.

IFAIL = 4

There are no degrees of freedom for the residual or the residual sum of squares is zero. In
either case the standard errors and F—statistics cannot be computed.

7. Accuracy

The block and treatment sums of squares are computed from the block and treatment residual
totals. The residuals are updated as each effect is computed and the residual sum of squares
computed directly from the residuals. This avoids any loss of accuracy in subtracting sums of
squares.

8. Further Comments

The number of rows in the ANOVA table and the number of treatment means are given by the
following formulae.

Let there be k factors with levels /; for i = 1,2,...,k. and let # be the maximum number of terms
in an interaction then the number of rows in the ANOVA tables is:
Z(k) + 3.
i
i=l

The number of treatment means is:

ST,

i=1 jeS,
where S; is the set of all combinations of the k factors i at a time.

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used,
see [3]. This is an iterative procedure in which estimates of the missing values are adjusted by
subtracting the corresponding values of the residuals. The new estimates are then used in the
analysis of variance. This process is repeated until convergence. A suitable initial value may be
the grand mean. When using this procedure IRDF should be set to the number of missing values
plus one to obtain the correct degrees of freedom for the residual sum of squares.

For analysis of covariance the residuals are obtained from an analysis of variance of both the
response variable and the covariates. The residuals from the response variable are then regressed
on the residuals from the covariates using, say, GO2CBF or GO2DAF. The coefficients obtained
from the regression can be examined for significance and used to produce an adjusted dependent
variable using the original response variable and covariate. An approximate adjusted analysis of
variance table can then be produced by using the adjusted dependent variable. In this case IRDF
should be set to one plus the number of fitted covariates.

For designs such as Latin squares one more of the blocking factors has to be removed in a
preliminary analysis before the final analysis. This preliminary analysis can be performed using
GO4BBF or a prior call to GO4CAF if the data is reordered between calls. The residuals from the
preliminary analysis are then input to GO4CAF. In these cases IRDF should be set to the
difference between N and the residual degrees of freedom from preliminary analysis. Care should
be taken when using this approach as there is no check on the orthogonality of the two analyses.

9. Example

The data, given by John and Quenouille [3], is for the yield of turnips for a factorial experiment
with two factors, the amount of phosphate with 6 levels and the amount of liming with 3 levels.
The design was replicated in 3 blocks. The data is input and the analysis of variance computed.
The analysis of variance table and tables of means with their standard errors are printed.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO4CAF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MAXF, MAXT, MTERM, BMAX
PARAMETER (NMAX=54,MAXF=2, MAXT=27, MTERM=6, BMAX=4 )
* .. Local Scalars ..
INTEGER I, IFAIL, INTER, IRDF, ITOTAL, J, K, L, N,
+ NBLOCK, NFAC, NTREAT
* .. Local Arrays ..
real BMEAN (BMAX), E(MAXT), R(NMAX), SEMEAN(MTERM),
+ TABLE (MTERM, 5), TMEAN(MAXT), Y(NMAX)
INTEGER IMEAN(MTERM), IWK(NMAX+3*MAXF), LFAC(MAXF)
* .. External Subroutines ..
EXTERNAL GO4CAF
* .. Executable Statements ..
WRITE (NOUT,FMT=*) ’GO4CAF Example Program Results’
* Skip heading in data file

READ (NIN,FMT=x)
READ (NIN,FMT=x) N, NBLOCK, NFAC, INTER
IF (N.LE.NMAX .AND. NBLOCK.LE.BMAX-1 .AND. NFAC.LE.MAXF) THEN
READ (NIN,FMT=x) (LFAC(J),J=1,NFAC)
READ (NIN,FMT=x) (Y(I),I=1,N)
IRDF = 0
IFAIL = -1

CALL GO4CAF(N,Y,NFAC, LFAC,NBLOCK, INTER, IRDF,MTERM, TABLE, ITOTAL,
+ TMEAN, MAXT, E, IMEAN, SEMEAN, BMEAN, R, IWK, IFAIL)

WRITE (NOUT,FMT=%)
WRITE (NOUT,FMT=+) ’ ANOVA table’
WRITE (NOUT,FMT=x)
WRITE (NOUT,FMT=%*)

+ ! Source df SS MS F’,
+ 4 Prob’
WRITE (NOUT,FMT=*)
K=20
IF (NBLOCK.GT.1l) THEN
K=K+ 1
WRITE (NOUT,FMT=99998) ’ Blocks *, (TABLE(1,J),J=1,5)
END IF

NTREAT = ITOTAL - 2 — K
DO 20 I = 1, NTREAT
WRITE (NOUT,FMT=99997) ’ Effect ', I, (TABLE(K+I,J),J=1,5)

20 CONTINUE
WRITE (NOUT,FMT=99998) ’ Residual ’, (TABLE(ITOTAL-1,J),J=1,3)
WRITE (NOUT,FMT=99998) ’ Total r, (TABLE(ITOTAL,J),J=1,2)

WRITE (NOUT,FMT=%)

WRITE (NOUT,FMT=*) ’ Treatment Means and Standard Errors’

WRITE (NOUT,FMT=%*)

K=1

DO 40 I = 1, NTREAT
L = IMEAN(I)
WRITE (NOUT,FMT=99996) ’ Effect ', I
WRITE (NOUT,FMT=x*)
WRITE (NOUT,FMT=99999) (TMEAN(J),J=K,L)
WRITE (NOUT, FMT=x*)
WRITE (NOUT,FMT=99995) ’ SE of difference in means = ',

+ SEMEAN(I)
WRITE (NOUT,FMT=x*)
K=L+1
40 CONTINUE
END IF
STOP
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9.2.

54 3 2 2

99999
99998
99997
99996
99995

FORMAT
FORMAT
END

Program Data

GO4CAF Example Program Data
: N NBLOCK NFAC INTER

6 3 ¢ LFAC

9.3. Program Results

GO4CAF Example Program Results

ANOVA table

FORMAT (8F10.2)
FORMAT (A, 3X,F3.0,2X,2(F10.0,2X),F10.3,2X,F9.4)
FORMAT (A,I2,3X,F3.0,2X,2(F10.0,2X),F10.3,2X,F9.4)
(A, I2)

(a,F10.2)

274 361 253 325 317 339 326 402
350 340 203 397 356 298 382 376
82 297 133 306 352 361 220 333

GO4CAF

336 379 345 361 352 334 318 339 393 358
355 418 387 379 432 339 293 322 417 342
270 388 379 274 336 307 266 389 333 353

Source df Ss MS F Prob
Blocks 2. 30119. 15059. 7.685 0.0018
Effect 1 5. 73008. 14602. 7.451 0.0001
Effect 2 2. 21596. 10798. 5.510 0.0085
Effect 3 10. 31192. 3119. 1.592 0.1513
Residual 34. 66628. 1960.
Total 53. 222543.
Treatment Means and Standard Errors
Effect 1
254.78 339.00 333.33 367.78 330.78 360.67
SE of difference in means = 20.87
Effect 2
334.28 353.78 305.11
SE of difference in means = 14.76
Effect 3
235.33 332.67 196.33 342.67 341.67 332.67 309.33
370.33
320.33 395.00 370.33 338.00 373.33 326.67 292.33
350.00
381.00 351.00
SE of difference in means = 36.14
Page 7 (last)
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GO4DAF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO4DAF computes sum of squares for a user defined contrast between means.

2 Specification

SUBROUTINE GO4DAF(NT, TMEAN, IREP, RMS, RDF, NC, CT, LDCT, EST,

1 TABLE, LDT, TOL, USETX, TX, IFAIL)
INTEGER NT, IREP(NT), NC, LDCT, LDT, IFAIL

real TMEAN(NT), RMS, RDF, CT(LDCT,NC), EST(NC),
1 TABLE(LDT,5), TOL, TX(NT)

LOGICAL USETX

3 Description

In the analysis of designed experiments the first stage is to compute the basic analysis of variance table,
the estimate of the error variance (the residual or error mean square), 6%, and the (variance ratio) F-
statistic for the ¢ treatments. If this F' test is significant then the second stage of the analysis is to explore
which treatments are significantly different.

If there is a structure to the treatments then this may lead to hypotheses that can be defined before
the analysis and tested using linear contrasts. For example, if the treatments were three different fixed
temperatures, say 18, 20 and 22, and an uncontrolled temperature (denoted by N) then the following
contrasts might be of interest.

18 20 22 N
@& 35 35 3§ -1

) -1 0 1 0

The first represents the average difference between the controlled temperatures and the uncontrolled
temperature. The second represents the linear effect of an increasing fixed temperature.

For a randomised complete block design or a completely randomised design, let the treatment means be
7;, ¢ = 1,2,...,¢t, and let the jth contrast be defined by A.;, i = 1,2,... ¢, then the estimate of the

contrast is simply:
t
Ay =D 7y
i=1

ij)

and the sum of squares for the contrast is:

A7
SSJ- = t—/{g——
diz1 ij/ni

where n; is the number of observations for the ith treatment. Such a contrast has one degree of freedom
so that the appropriate F-statistic is SSj /&%

(1)

¢
The two contrasts A;; and ), are orthogonal if Z AijAij = 0 and the contrast A;; is orthogonal to the

i=1
t
overall mean if Z)‘ii = 0. In practice these sums will be tested against a small quantity, €. If each

1=1
of a set of contrasts is orthogonal to the mean and they are all mutually orthogonal then the contrasts
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provide a partition of the treatment sum of squares into independent components. Hence the resulting
F-tests are independent.

If the treatments come from a design in which treatments are not orthogonal to blocks then the sum of
squares for a contrast is given by:

S

! Z§=1 ’\?j/"i @

where
t
* —_ *
Aj = E T; /\ij
i=1

with 77, i = 1,2,...,t being adjusted treatment means computed by first eliminating blocks then
computing the treatment means from the block adjusted observations without taking into account the
non-orthogonality between treatments and blocks. For further details see John [2] and Morgan [3].

4 References
[1] Cochran W G and Cox G M (1957) Ezperimental Designs Wiley
[2] John J A (1987) Cyclic Designs Chapman and Hall

[3] Morgan G W (1993) Analysis of variance using the NAG Fortran Library: Examples from Cochran
and Cox NAG Technical Report TR 3/93 NAG Ltd, Oxford

[4] Winer B J (1970) Statistical Principles in Ezperimental Design McGraw-Hill

5 Parameters

1: NT — INTEGER Input

On entry: the number of treatment means, ¢.

Constraint: NT > 2.

2: TMEAN(NT) — real array Input
On entry: the treatment means, 7;, 1 = 1,2,...,1.

3: IREP(NT) — INTEGER array Input
On entry: the replication for each treatment mean, n;, 1 =1,2,...,t.

4: RMS — real Input

On entry: the residual mean square, o2

Constraint: RMS > 0.0.

5:  RDF — real Input
On entry: the residual degrees of freedom.
Constraint: RDF > 1.0.

6: NC — INTEGER Input
On entry: the number of contrasts.
Constraint: NC > 1.

7:  CT(LDCT,NC) — real array Input

On entry: the columns of CT must contain the NC contrasts, that is CT(i, j) must contain A;; for
i=1,2,...,,7=12,...,NC.
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10:

11:

12:

13:

14:

15:

6

LDCT — INTEGER Input

On entry: the first dimension of the array CT as declared in the (sub)program from which GO4DAF
is called.

Constraint: LDCT > NT.

EST(NC) — real array Output
On ezit: the estimates of the contrast, A;,j=12,.. NC.

TABLE(LDT,5) — real array Output

On ezit: the rows of the analysis of variance table for the contrasts. For each row column 1 contains
the degrees of freedom, column 2 contains the sum of squares, column 3 contains the mean square,
column 4 the F-statistic and column 5 the significance level for the contrast. Note that the degrees
of freedom are always one and so the mean square equals the sum of squares.

LDT — INTEGER Input

On entry: the first dimension of the array TABLE as declared in the (sub)program from which
GO4DAF is called.

Constraint: LDT > NC.

TOL — real Input

On entry: the tolerance, € used to check if the contrasts are orthogonal and if they are orthogonal
to the mean. If TOL < 0.0 the value machine precision is used.

USETX — LOGICAL Input
On entry: if USETX = .TRUE. the means 7 are provided in TX and the formula (2) is used
instead of formula (1). If USETX = .FALSE. formula (1) is used and TX is not referenced.
TX(NT) — real array Input
On entry: if USETX = .TRUE. TX must contain the means ,i=1,2,...,1t.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On ezit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).
For this routine, because the values of output parameters may be useful even if IFAIL # 0 on exit,

users are recommended to set IFAIL to —1 before entry. It is then essential to test the value of
IFAIL on exit.

Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL =1

On entry, NC < 1,
or NT < 2,
or LDCT < NT,
or LDT < NC,
or RMS < 0.0,
or RDF < 1.0.
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TIFAIL = 2

On entry, a contrast is not orthogonal to the mean,

or at least two contrasts are not orthogonal.

If IFAIL = 2 full results are returned but they should be interpreted with care.

7 Accuracy

The computations are stable.

8 Further Comments

If the treatments have a factorial structure GO4CAF should be used and if the treatments have no
structure the means can be compared using GO4DBF.

9 Example

The data is given in Cochran and Cox [3] and is for a completely randomised experiment on potato scab
with seven treatments representing amounts of sulphur applied, whether the application was in spring
or autumn and a control treatment. The one-way anova is computed using GO02BBF. Two contrasts
are analysed, one comparing the control with use of sulphur, the other comparing spring with autumn
application.

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO4DAF Example Program Text
Mark 17 Release. NAG Copyright 1995.
. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NTMAX, NBMAX
PARAMETER (NMAX=32,NTMAX=7 ,NBMAX=1)
* .. Local Scalars ..
real GMEAN, RDF, RMS, TOL
INTEGER I, IFAIL, IRDF, J, LDT, N, NBLOCK, NC, NT
* .. Local Arrays ..
real BMEAN (NBMAX), C(NTMAX,NTMAX), CT(NTMAX,NTMAX),
+ EF(NTMAX), EST(NTMAX), R(NMAX), TABLE(NTMAX+4,5),
+ TMEAN(NTMAX), TX(NTMAX), WK(NTMAX*NTMAX+NTMAX),
+ Y (NMAX)
INTEGER IREP(NTMAX), IT(NMAX)
CHARACTER*11 NAMES (NTMAX)
* .. External Subroutines ..
EXTERNAL GO4BBF, GO4DAF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO4DAF Example Program Results’
* Skip heading in data file

READ (NIN,*)

READ (NIN,*) N, NT

IF (N.LE.NMAX .AND. NT.LE.NTMAX) THEN
READ (NIN,*) (Y(I),I=1,N)
READ (NIN,*) (IT(I),I=1,N)
TOL = 0.000005€0
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9.2

IRDF = 0
NBLOCK = 1

LDT = NTMAX + 4
IFAIL = -1

CALL GO4BBF(N,Y,NBLOCK,NT,IT,GHEAN,BHEAN,THEAN,TABLE,LDT,C,
+ NTMAX,IREP,R,EF,TOL,IRDF,WK,IFAIL)

WRITE (NOUT,*)

WRITE (NOUT,*) ’ ANOVA table’

WRITE (NOUT,*)

WRITE (NOUT,*)
+ ’ Source df SS MS
+ ) Prob’

WRITE (NOUT,*)

WRITE (NOUT,99998) ’ Treatments’, (TABLE(2,7J),J=1,5)
WRITE (NOUT,99998) ’® Residual °’, (TABLE(3,7J),J=1,3)

WRITE (NOUT,99998) ’ Total *, (TABLE(4,J),J=1,2)
£ 3

RMS = TABLE(3,3)

RDF = TABLE(3,1)

READ (NIN,*) NC
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Orthogonal Contrasts’
WRITE (NOUT,*)
DD 20 I =1, NC
READ (NIN,*) (CT(J,I),J=1,NT)
READ (NIN,99999) NAMES(I)
20 CONTINUE

CALL GO4DAF(NT,TMEAN,IREP,RHS,RDF,NC,CT,NTHAX,EST,TABLE(S,1),

+ LDT,TOL, .FALSE.,TX,IFAIL)
DO 40 I = 1, NC

WRITE (NOUT,99998) NAMES(I), (TABLE(I+4,J]),J=1,5)

40 CONTINUE
END IF
STOP
%*
99999 FORMAT (A)
99998 FORMAT (A,3X,F3.0,2X,2(F10.1,2X),F10.3,2X,F9.4)
END

Example Data
GO4DAF Example Program Data
327

12 10 24 29 30 18 32 26

99164307 219 16 10 18 18
18 24 12 19 10 4 4 5 17 7 16 17

11111111
222233334444
56566566667 T7T7T7
2

6 -1-1-1-1-1-1
Cntl v S
01-11-11-1
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Spring v A

9.3 Example Results
GO4DAF Example Program Results

ANOVA table

Source df SS MS F Prob
Treatments 6. 972.3 162.1 3.608 0.0103
Residual 25. 1122.9 44 .9
Total 31. 2095.2

Orthogonal Contrasts

Cntl v S 1. 518.0 518.0 11.5833 0.0023
Spring v A 1. 228.2 228.2 5.080 0.0332
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GO04DBF - NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO4DBF computes simultaneous confidence intervals for the differences between means. It is intended
for use after GO4BBF or G04BCF.

2 Specification

SUBROUTINE GO4DBF(TYPE, NT, TMEAN, RDF, C, LDC, CLEVEL, CIL, CIU,
1 ISIG, IFAIL)

INTEGER NT, LDC, ISIG(NT*(NT-1)/2), IFAIL
real TMEAN(NT), RDF, C(LDC,NT), CLEVEL,
1 CIL(NT*(NT-1)/2), CIU(NT*(NT-1)/2)
CHARACTER#1 TYPE

3 Description

In the computation of analysis of a designed experiment the first stage is to compute the basic analysis
of variance table, the estimate of the error variance (the residual or error mean square), 62, the residual
degress of freedom, v, and the (variance ratio) F-statistic for the ¢ treatments. The second stage of
the analysis is to compare the treatment means. If the treatments have no structure, for example the
treatments are different varieties, rather than being structured, for example a set of different temperatures,
then a multiple comparison procedure can be used.

A multiple comparison procedure looks at all possible pairs of means and either computes confidence
intervals for the difference in means or performs a suitable test on the difference. If there are ¢ treatments
then there are ¢(t — 1)/2 comparisons to be considered. In tests the type 1 error or significance level is
the probability that the result is considered to be significant when there is no difference in the means.
If the usual t-test is used with, say, a five percent significance level then the type 1 error for all k =
t(t — 1)/2 tests will be much higher. If the tests were independent then if each test is carried out at the
100a percent level then the overall type 1 error would be a* =1 — (1 — a)F ~ ka. In order to provide an
overall protection the individual tests, or confidence intervals, would have to be carried out at a value of
a such that o* is the required significance level, e.g. five percent.

The 100(1 — «) percent confidence interval for the difference in two treatment means, 7; and 7; is given
by
(7; = 7}) + n;,u,t)se(f'i - 72]’))

where se() denotes the standard error of the difference in means and T(’"ay,,’t) Is an appropriate percentage
point from a distribution. There are several possible choices for Ta,vt)- These are:

(a) %‘1(1—a,u,t)’ the studentised range statistic, see GO1IFMF. It is the appropriate statistic to compare
the largest mean with the smallest mean. This is known as Tukey—Kramer method.

(b) t(a/k,v) this is the Bonferroni method.

(¢) (o) Where g =1—(1— a)!/®, this is known as the Dunn-Sidak method.

(d) t(4,) this is known as Fisher’s LSD (least significant difference) method. It should only be used
if the overall F-test is significant, the number of treatment comparisons is small and were planned
before the analysis.

(e) \/(lc —1)Fy_4 k-1, where F;_, ;. ,, is the deviate corresponding to a lower tail probability of
1 — « from an F-distribution with k¥ — 1 and v degrees of freedom. This is Scheffe’s method.
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In cases (b), (¢) and (d), t(4,, denotes the o two-tail significance level for the Student’s t-distribution
with v degrees of freedom, see (:01FBF.

The Scheffe method is the most conservative, followed closely by the Dunn-Sidak and Tukey-Kramer
methods.
To compute a test for the difference between two means the statistic,

=T
se(T; — 7;)

is compared with the appropriate value of T(*a,u,t)-

4 References

[1] Kotz S and Johnson N L (ed.) (1985) Multiple range and associated test procedures Encyclopedia
of Statistical Sciences 5 Wiley, New York

[2] Kotz S and Johnson N L (ed.) (1985) Multiple comparison Encyclopedia of Statistical Sciences 5
Wiley, New York

[3] Winer B J (1970) Statistical Principles in Experimental Design McGraw-Hill

5 Parameters

1: TYPE — CHARACTER*1 Input

On entry: indicates which method is to be used.

If TYPE = 'T’, the Tukey-Kramer method is used.
If TYPE = ’B’, the Bonferroni method is used.

If TYPE = ’D’, the Dunn-Sidak method is used.
If TYPE = ’L’, the Fisher LSD method is used.

If TYPE = ’S’, the Scheffe’s method is used.

Constraint: TYPE = "T°’B’,’D’,’L’ or ’S’.

2: NT — INTEGER Input
On entry: the number of treatment means, t.
Constraint: NT > 2.

3: TMEAN(NT) — real array Input

On entry: the treatment means, 7;, 1 = 1,2,....;t.

4: RDF — real Input

On entry: the residual degrees of freedom, v.

Constraint: RDF > 1.0.

5: C(LDC,NT) — real array Input

On entry: the strictly lower triangular part of C must contain the standard errors of the differences
between the means as returned by GO4BBF and G04BCF. That is C(i,j), i > j, contains the
standard error of the difference between the ith and jth mean in TMEAN.

Constraint: C(i,j) > 0.0,1=2,3,...,t;j = 1,2,...,i— 1.

6: LDC — INTEGER Input
On entry: the first dimension of the array C as declared in the (sub)program from which GO4DBF
is called.

Constraint: LDC > NT.
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10:

11:

6

CLEVEL — real Input

On entry: the required confidence level for the computed intervals, (1 — «).

Constraint: 0.0 < CLEVEL < 1.0.

CIL(NT*(NT-1)/2) — real array Output
On exit: the ((i — 1)(i — 2)/2 + j)th element contains the lower limit to the confidence interval for
the difference between ith and jth means in TMEAN, i =2,3,...,¢;j=1,2,...,i— 1.
CIU(NT*(NT-1)/2) — real array Output
On exit: the ((i — 1)(¢ — 2)/2 + j)th element contains the upper limit to the confidence interval for
the difference between ith and jth means in TMEAN, i=2,3,...,¢;j=1,2,...,i— 1.

ISIG(NT*(NT-1)/2) — INTEGER array Output

On exit: the ((i — 1)(i — 2)/2 + j)th element indicates if the difference between ith and jth means
in TMEAN is significant, i = 2,3,...,t; j = 1,2,...,4— 1. If the difference is significant then the
returned value is 1; otherwise the returned value is 0.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Errors and Warnings

It on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL =1

On entry, NT < 2,
or LDC < NT,
or RDF < 1.0,
or CLEVEL < 0.0,
or CLEVEL > 1.0,
or TYPE # 'T’,’B’,’D’, 'L’ or ’S’.

IFAIL = 2

On entry, C(i,j) < 0.0 for some ¢,j,i=2,3,...,¢;j=1,2,...,i—1.

IFAIL = 3

7

There has been a failure in the computation of the studentized range statistic. This is an unlikely
error. Try using a small value of CLEVEL.

Accuracy

For the accuracy of the percentage point statistics see GO1FMF and GO1FBF.
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8 Further Comments

If the treatments have a structure then the use of linear contrasts as computed by GO4DAF may be more
appropriate.

An alternative approach to one used in this routine is the sequential testing of the Student-Newman-
Keuls procedure. This, in effect, uses the Tukey-Kramer method but first ordering the treatment means
and examining only subsets of the treatment means in which the largest and smallest are significantly
different. At each stage the third parameter of the Studentised range statistic is the number of means in
the subset rather than the total number of means.

9 Example

In the example taken from Winer [3] a completely randomised design with unequal treatment replication
is analysed using GO4BBF and then confidence intervals are computed by GO4DBF using the Tukey-
Kramer method.

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* GO4DBF Example Program Text
Mark 17 Release. NAG Copyright 1995.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, NTMAX, NBMAX
PARAMETER (NMAX=26 ,NTMAX=4 ,NBMAX=1)
* .. Local Scalars ..
real CLEVEL, GMEAN, RDF, TOL
INTEGER I, IFAIL, IJ, IRDF, J, N, NBLOCK, NT
CHARACTER TYPE
* .. Local Arrays ..
real BMEAN (NBMAX), C(NTMAX,NTMAX),
+ CIL(NTMAX*(NTMAX-1)/2), CIU(NTMAX*(NTMAX-1)/2),
EF(NTMAX), R(NMAX), TABLE(4,5), TMEAN (NTMAX) ,
+ WK (NTMAX*NTMAX+NTMAX), Y(NMAX)
INTEGER IREP (NTMAX), ISIG(NTMAX*(NTMAX-1)/2), IT(NMAX)
CHARACTER STAR(2)
* .. External Subroutines .
EXTERNAL GO4BBF, GO4DBF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO4DBF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NT
IF (N.LE.NMAX .AND. NT.LE.NTMAX) THEN
READ (NIN,*) (Y(I),I=1,N)
READ (NIN,*) (IT(I),I=1,N)
TOL = 0.000005€0
IRDF = 0
NBLOCK = 1
IFAIL = -1
CALL GO4BBF(N,Y,NBLOCK,NT,IT,GMEAN,BMEAN,TMEAN,TABLE,4,C,NTHAX,
+ IREP,R,EF,TOL,IRDF,WK,IFAIL)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ ANOVA table’
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WRITE
WRITE
+ '’ S
+ )
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
RDF =
READ (

CALL G

STAR(2
STAR(1
IJ=0
DO 40
DO

+
20 CON
40 CONTIN
END IF
STOP
*
99999 FORMAT (1
99998 FORMAT (A
99997 FORMAT (2
END

(NOUT, *)

(NOUT, *)

ource daf SS MS F’,
Prob’

(NOUT, *)

(NOUT,99998) ’ Treatments’, (TABLE(2,7J),J=1,5)

(NOUT,99998) ’ Residual °, (TABLE(3,7J),J=1,3)

(NOUT,99998) ’ Total ’, (TABLE(4,J),J=1,2)

(NOUT, *)

(NOUT,*) ’ Treatment means’

(NOUT, *)

(NOUT,99999) (TMEAN(J),J=1,NT)

(NOUT, *)

(NOUT,*) ’ Simultaneous Confidence Intervals’

(NOUT, *)

TABLE(3,1)

NIN,*) TYPE, CLEVEL

04DBF(TYPE,NT,TMEAN,RDF,C,NTHAX,CLEVEL,CIL,CIU,ISIG,

IFAIL)

) = %

) = 1

I =1, NT

20J=1,1-1

IJ=1IJ+1

WRITE (NOUT,99997) I, J, CIL(IJ), CIU(IJ),
STAR(ISIG(IJ)+1)

TINUE

UE

0F8.3)
,3X,F3.0,2X,2(F10.1,2X),F10.3,2X,F9.4)
X,2I2,3X,2(F10.3,3X),4)

9.2 Example Data

GO4DBF Example Program Data

26 4

3 2 4 3 1
7 8 410 6
3 2 1 2 4
10 12 8 b5 12
111111
22222
33333333
444441414
’T? .96
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9.3 Example Results
GO4DBF Example Program Results

ANOVA table

Source df SS MS F Prob
Treatments 3. 239.9 80.0 24.029 0.0000
Residual 22. 73.2 3.3
Total 25. 313.1

Treatment means

3.000 7.000 2.250 9.429

Simultaneous Confidence Intervals

21 0.933 7.067 %
31 -3.486 1.986
32 -7.638 -1.862 *
4 1 3.610 9.247  *
4 2 -0.538 5.395
4 3 4,557 9.800 *
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GO4EAF - NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO4EAF computes orthogonal polynomial or dummy variables for a factor or classification variable.

2 Specification

SUBROUTINE GO4EAF(TYPE, N, LEVELS, IFACT, X, LDX, V, REP, IFAIL)

INTEGER N, LEVELS, IFACT(N), LDX, IFAIL
real X(LDX,*), V(*), REP(LEVELS)
CHARACTER*1 TYPE

3 Description

In the analysis of an experimental design using a general linear model the factors or classification variables
that specify the design have to be coded as dummy variables. GO4EAF computes dummy variables that
can then be used in the fitting of the general linear model using GO2DAF.

If the factor of length n has k levels then the simplest representation is to define k dummy variables, X ;
such that X; = 1if the factor is at level j and 0 otherwise for J = 1,2,...,k. However, there is usually a
mean included in the model and the sum of the dummy variables will be aliased with the mean. To avoid
the extra redundant parameter k — 1 dummy variables can be defined as the contrasts between one level
of the factor, the reference level and the remaining levels. If the reference level is the first level then the-
dummy variables can be defined as X; = 1if the factor is at level j and 0 otherwise for 1=23,.. k.
Alternatively, the last level can be used as the reference level.

A second way of defining the k — 1 dummy variables is to use a Helmert matrix in which levels 2,3,... k
are compared with the average effect of the previous levels. For example if £ = 4 then the contrasts
would be:

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

Thus variable j, for j = 1,2,...,k — 1 is given by
Xj = —1 if factor is at level less than j + 1

J
X; = Z’"i/"jﬂ if factor is at level j + 1
i=1
X; = 01if factor is at level greater than j + 1
where r; 1s the number of replicates of level j.

If the factor can be considered as a set of values from an underlying continuous variable then the factor
can be represented by a set of k — 1 orthogonal polynomials representing the linear, quadratic etc. effects
of the underlying variable. The orthogonal polynomial is computed using Forsythe’s algorithm [2], see
Cooper [1]. The values of the underlying continuous variable represented by the factor levels have to be
supplied to the routine.

The orthogonal polynomials are standardized so that the sum of squares for each dummy variable is one.
For the other methods integer (£1) representations are retained except that in the Helmert representation
the code of level j + 1 in dummy variable j will be a fraction.

4 References

(1] Cooper B E (1968) Algorithm AS 10. The use of orthogonal polynomials Appl. Statist. 17 283-287
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[2] Forsythe G E (1957) Generation and use of orthogonal polynomials for data fitting with a digital

computer J. Soc. Indust. Appl. Math. 5 74-88

5 Parameters

1:

TYPE — CHARACTER*1 Input
On entry: the type of dummy variable to be computed.

If TYPE = 'P’, an orthogonal Polynomial representation is computed.

If TYPE = 'H’, a Helmert matrix representation is computed.

If TYPE = ’F’, the contrasts relative to the First level are computed.

If TYPE = 'L’, the contrasts relative to the Last level are computed.
If TYPE = ’C’, a Complete set of dummy variables is computed.

Constraint: TYPE =P’ "H’, ’F’, L’ or ’C".
N — INTEGER Input

On entry: the number of observations for which the dummy variables are to be computed, n.

Constraint: N > LEVELS.

LEVELS — INTEGER Input
On entry: the number of levels of the factor, k.

Constraint: LEVELS > 2.

IFACT(N) — INTEGER array Input

On entry: the n values of the factor.

Constraint: 1 <IFACT(i) < LEVELS, fori =1,2,...,n.

X(LDX,*) — real array Output

Note: the second dimension of the array X must be at least LEVELS—1if TYPE ="P’, 'H’, 'F’ or
I’ and LEVELS if TYPE ="C".

On ezit: the n by k* matrix of dummy variables, where k* =k —1if TYPE =P, ’H’, F’ or 'L’
and k* = k if TYPE ='C".
LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which GO4EAF
is called.

Constraint: LDX > N.

V(*) — real array Input
Note: the dimension of the array V must be at least LEVELS if TYPE = P’ and 1 otherwise.

On entry: if TYPE =P’ the k distinct values of the underlying variable for which the orthogonal
polynomial is to be computed. If TYPE # P’ V is not referenced.

Constraint: if TYPE = P’ then the k values of V must be distinct.

REP(LEVELS) — real array Qutput
On ezil: the number of replications for each level of the factor, r;,1=1,2,...,k.
IFAIL — INTEGER Input/Qutput

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6 Errors and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL =1

On entry, LEVELS < 2,
or N < LEVELS,
or LDX < N,
or TYPE # 'P’,’H’, ’F’, 'L’ or ’C".
IFAIL = 2
On entry, a value of IFACT is not in the range 1 < IFACT(:) < LEVELS, fori = 1,2,.. ., n,
or TYPE =P’ and not all values of V are distinct,

or not all levels are represented in IFACT.

IFAIL=3

An orthogonal polynomial has all values zero. This will be due to some values of V being very
close together. Note this can only occur if TYPE = 'P’.

7 Accuracy

The computations are stable.

8 Further Comments

Other routines for fitting polynomials can be found in Chapter E02.

9 Example

Data are read in from an experiment with four treatments and three observations per treatment with the
treatment coded as a factor. GO4EAF is used to compute the required dummy variables and the model
is then fitted by GO2DAF.

9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

GO4EAF Example Program Text

* Mark 17 Release. NAG Copyright 1995,
. Parameters ..
INTEGER MMAX, NMAX
PARAMETER (MMAX=5,NMAX=12)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* .. Local Scalars ..
real RSS, TOL
INTEGER I, IDF, IFAIL, IP, IRANK, J, LDX, LEVELS, M, N
LOGICAL SVD
CHARACTER MEAN, TYPE, WEIGHT
* .. Local Arrays ..
real B(MMAX), COV((MMAX*MMAX+MMAX)/2), H(NMAX),
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Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

GOSCAF 6 Pseudo-random real numbers, uniform distribution over (0,1)

GO5CBF 6 Initialise random number generating routines to give repeatable sequence

GO5CCF 6 Initialise random number generating routines to give non-repeatable
sequence

GOSCFF 6 Save state of random number generating routines

GO5CGF 6 Restore state of random number generating routines

GOSDAF 6 Pseudo-random real numbers, uniform distribution over (a, b)

GOSDBF 6 Pseudo-random real numbers, (negative) exponential distribution

GOSDCF 6 Pseudo-random real numbers, logistic distribution

GOSDDF 6 Pseudo-random real numbers, Normal distribution

GOSDEF 6 Pseudo-random real numbers, lognormal distribution

GOSDFF 6 Pseudo-random real numbers, Cauchy distribution

GOSDHF 6 Pseudo-random real numbers, x? distribution

GOSDJF 6 Pseudo-random real numbers, Student’s ¢-distribution

GOSDKF 6 Pseudo-random real numbers, F-distribution

GOSDPF 8 Pseudo-random real numbers, Weibull distribution

GOSDRF 15 Pseudo-random integer, Poisson distribution

GOSDYF 6 Pseudo-random integer from uniform distribution

GOSDZF 6 Pseudo-random logical (boolean) value

GOSEAF 10 Set up reference vector for multivariate Normal distribution

GOSEBF 6 Set up reference vector for generating pseudo-random integers, uniform
distribution

GOSECF 6 Set up reference vector for generating pseudo-random integers, Poisson
distribution

GOSEDF 6 Set up reference vector for generating pseudo-random integers, binomial
distribution

GOSEEF 6 Set up reference vector for generating pseudo-random integers, negative
binomial distribution

GOSEFF 6 Set up reference vector for generating pseudo-random integers, hyperge-
ometric distribution

GOSEGF 8 Set up reference vector for univariate ARMA time series model

GOSEHF 10 Pseudo-random permutation of an integer vector

GOSEJF 10 Pseudo-random sample from an integer vector

GOSEWF 8 Generate next term from reference vector for ARMA time series model

GOSEXF 6 Set up reference vector from supplied cumulative distribution function
or probability distribution function

GOSEYF 6 Pseudo-random integer from reference vector

GOSEZF 10 Pseudo-random multivariate Normal vector from reference vector

GOSFAF 14 Generates a vector of random numbers from a uniform distribution

GOSFBF 14 Generates a vector of random numbers from an (negative) exponential
distribution

GOSFDF 14 Generates a vector of random numbers from a Normal distribution

GOSFEF 15 Generates a vector of pseudo-random numbers from a beta distribution

GOSFFF 15 Generates a vector of pseudo-random numbers from a gamma
distribution

GOSFSF 16 Generates vector of pseudo-random variates from Von Mises distribution

GO5GAF 16 Computes random orthogonal matrix

GO5GBF 16 Computes random correlation matrix



GOSHDF 15 Generates a realisation of a multivariate time series from a VARMA
model
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1 Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudo-random numbers from
various distributions, and the generation of pseudo-random time series from specified time-series models.

2 Background to the Problems

A sequence of pseudo-random numbers is a sequence of numbers generated in some systematic way such
that its statistical properties are as close as possible to those of true random numbers: for example,
negligible correlation between consecutive numbers. The most common method used is a multiplicative
congruential algorithm defined as:

n; = (a xn;_,) modm (1)

The integers n; are then divided by m to give uniformly distributed random numbers lying in the interval
(0,1).

The NAG generator uses the values a = 13!3 and m = 259; for further details see GOS5CAF. This generator
gives a cycle length (i.e., the number of random numbers before the sequence starts repeating itself) of
257 A good rule of thumb is never to use more numbers than the square root of the cycle length in any
one experiment as the statistical properties are impaired. For closely related reasons, breaking numbers
down into their bit patterns and using individual bits may cause trouble.

The sequence given in (1) needs an initial value ny, known as the seed. The use of the same seed will lead
to the same sequence of numbers. One method of obtaining the seed is to use the real-time clock; this
will give a non-repeatable sequence. It is important to note that the statistical properties of the random
numbers are only guaranteed within sequences and not between sequences. Repeated initialization will
thus render the numbers obtained less rather than more independent.

Random numbers from other distributions may be obtained from the uniform random numbers by the
use of transformations, rejection techniques, and for discrete distributions table based methods.

(a) Transformation methods

For a continuous random variable, if the cumulative distribution function (CDF) is F(z) then
for a uniform (0,1) random variate u, y = F~!(u) will have CDF F(z). This method is only
efficient in a few simple cases such as the exponential distribution with mean g, in which case
F~Y(u) = —plogu. Other transformations are based on the joint distribution of several random
variables. In the bivariate case, if v and w are random variates there may be a function g such that
y = g(v,w) has the required distribution; for example, the Student’s ¢-distribution with n degrees
of freedom in which v has a Normal distribution, w has a gamma distibution and g(v, w) = vy/n/w.

(b) Rejection methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution
is then accepted as a random number from the required distribution with a certain probability;
otherwise, it is rejected and a new number is generated from the envelope distribution.

(c) Table search methods

For discrete distributions, if the cumulative probabilities, P; = Prob(z < 7), are stored in a table
then, given u from a uniform (0,1) distribution, the table is searched for i such that P;_, <u < P,.
The returned value i will have the required distribution. The table searching can be made faster
by means of an index, see Ripley [4]. The effort required to set up the table and its index may
be considerable, but the methods are very efficient when many values are needed from the same
distribution.

In addition to random numbers from various distributions, random compound structures can be
generated. These include random time series, random matrices and random samples.

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan [3]). It is also worth considering whether a simulation is the best approach to solving the
problem. For example, low-dimensional integrals are usually more efficiently calculated by routines in
Chapter D01 rather than by Monte Carlo integration.
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3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Design of the Chapter

All the generation routines call — directly or indirectly — an internal basic generator, which generates
random numbers from a uniform distribution over (0,1). Thus a call to any generation routine will affect
all subsequent random numbers produced by any other routine in the chapter. Despite this effect, the
values will remain as independent as if the different sequences were produced separately.

Two utility routines are provided to initialize the basic generator:

GO5CBF initializes it to a repeatable state, dependent on an integer parameter: two calls of GO5CBF
with the same parameter-value will result in the same subsequent sequences of random numbers.

GO05CCF initializes it to a non-repeatable state, in such a way that different calls of GO5CCF, either
in the same run or different runs of the program, will almost certainly result in different subsequent
sequences of random numbers.

As mentioned in Section 2, it is important to note that the statistical properties of pseudo-random
numbers are only guaranteed within sequences and not between sequences. Repeated initialization will
thus render the numbers obtained less rather than more independent. In a simple case there should be
only one call to GO5CBF or GO5CCF, which should be before any call to an actual generation routine.

Two other utility routines, GOSCFF and GO5CGF, are provided to save or restore the state of the basic
generator (including the seed of the multiplicative congruential method used by the basic generator).
GO05CFF and GO5CGF can be used to produce two or more sequences of numbers simultaneously, where
some are repeatable and some are not; for example, this can be used to simulate signal and noise. As
their overheads are not negligible, numbers should be produced in batches when this technique is used.
While they can be used to save the state of the internal generator between jobs, the two arrays must
be restored accurately. The corresponding process between machines, while sometimes possible, is not
advised.

3.2 Selection of Routine

For three of the commonest continuous distributions — uniform, exponential, and Normal - there is a choice
between calling a function to return a single random number and calling a subroutine to fill an array
with a sequence of random numbers; the latter is likely to be much more efficient on vector-processing
machines.

Distribution Function returning a | Subroutine returning an
single number array of numbers

uniform over (0,1) GO5CAF GO5FAF

uniform over (a, b) GO5DAF GO5FAF

exponential GO05DBF GO5FBF

Normal GO05DDF GO5FDF

For two discrete distributions, the uniform and Poisson, there is a choice between routines that use
indexed search tables, which are suitable for the generation of many variates from the distribution with
the same parameters, and routines that are more efficient in the single call situation when the parameters

may be changing.
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Distribution Single call Set up table
discrete uniform GO05DYF GO5EBF
Poisson GO5DRF GO5ECF

GO5EBF and GO5ECF return a reference array which is then used by GOSEYF.

The following distributions are also available. Those indicated can return more than one value per call.

(a) Continuous Distributions

Beta distribution (multiple) GOSFEF
Cauchy distribution GO5DFF
Chi-square distribution GO5DHF
F-distribution GO5DKF
Gamma distribution (multiple) GO5FFF
Logistic distribution G05DCF
Lognormal distribution GO5DEF
Student’s t-distribution G05DJF
von Mises distribution GO5FSF
Weibull distribution GO05DPF
(b) Multivariate Distributions
Multivariate Normal distribution GO5EAF and GOSEZF
(c) Discrete Distributions using table search
Binomial distribution GO5EDF
Hypergeometric distribution GO5EFF
Negative binomial distribution GO5EEF
User-supplied distribution GO5EXF

The above routines set up the table and index in a reference array; GOSEYF can then be called to
generate the random variate from the information in the reference array.

(d) Generation of Time Series

Univariate ARMA model, Normal errors GO5EGF and GOSEWF
Vector ARMA model, Normal errors GO5HDF
(e) Sampling and Permutation
Random permutation of an integer vector GO5EHF
Random sample from an integer vector GO5EJF
Random logical value GO05DZF
(f) Random Matrices
Random orthogonal matrix GO5GAF
Random correlation matrix GO05GBF

3.3 Programming Advice

Take care when programming calls to those routines in this chapter which are functions. The reason is
that different calls with the same parameters are intended to give different results.

For example, if you wish to assign to Z the difference between two successive random numbers generated
by GO5CAF, beware of writing

Z = GOSCAF(X) - GOSCAF(X)
It is quite legitimate for a Fortran compiler to compile zero, one or two calls to GO5CAF; if two calls,

they may be in either order (if zero or one calls are compiled, Z would be set to zero). A safe method to
program this would be

G05.4 [NP3086/18]
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X = GO5CAF(X)
Y = GOSCAF(Y)
Z = X-Y

Another problem that can occur is that an optimising compiler may move a call to a function out of a
loop. Thus, the same value would be used for all iterations of the loop, instead of a different random
number being generated at each iteration. If this problem occurs, consult an expert on your Fortran
compiler.

All the routines in this chapter rely on information stored in common blocks, which must be saved between
calls. This need not be a matter of concern unless a program is split into overlays; in such a case, the
safest course is to ensure that the G05 routines are in the root overlay.

4 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have either been withdrawn or superseded. Those routines indicated
by a dagger are still present at Mark 18, but will be omitted at a future date. Advice on replacing calls
to these routines is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded

Routines’.
GO5DGF GO5DLF GO05DMF

5 References
[1] Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press
[2] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison-Wesley (2nd Edition)
[3] Morgan B J T (1984) Elements of Simulation Chapman and Hall
[4] Ripley B D (1987) Stochastic Simulation Wiley
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GOS5CAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GOSCAF returns a pseudo-random number taken from a uniform distribution between 0 and 1.

2. Specification
real FUNCTION GO5CAF (X)
real X

3. Description
This routine returns the next pseudo-random number from the basic uniform (0,1) generator.
The basic generator uses a multiplicative congruential algorithm:
b,, = 13®xb,mod 2%
The integer b,,, is divided by 2% to yield a real value y, which is guaranteed to satisify
0<y<l

The value of b, is saved internally in the code. The initial value b, is set by default to

123456789% (2°2+1), but the sequence may be re-initialized by a call to GO5CBF (for a
repeatable sequence) or GOSCCF (for a non-repeatable sequence). The current value of b, may
be saved by a call to GO5CFF, and restored by a call to GOSCGF.

GOSFAF may be used to generate a vector of n pseudo-random numbers which are exactly the
same as n successive values of GOSCAF. On vector-processing machines GOSFAF is likely to be
much faster.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

5. Parameters
11 X -—real Dummy
A dummy argument (originally required by ANSI Fortran 66 syntax).

6. Error Indicators and Warnings
None.

7. Accuracy
Not applicable.
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8.

9.1.

Page 2

Further Comments
The period of the basic generator is 2°%7.

Its performance has been analysed by the Spectral Test, see Knuth [1], Section 3.3.4, yielding the
following results in the notation of Knuth [1].

n v Upper bound for v,

n

2 3.44x10®  4.08x10%
3 429x10° 5.88x10°
4  1.72x10*  2.32x10*
5 1.92x10®°  3.33x10°
6 593 939
7 198 380
8 108 197
9 67 120

The right hand column gives an upper bound for the values of v, attainable by any multiplicative
congruential generator working modulo 2%,

An informal interpretation of the quantities v, is that consecutive n-tuples are statistically
uncorrelated to an accuracy of 1/v,. This is a theoretical result; in practice the degree of
randomness is usually much greater than the above figures might support. More details are given
in Knuth [1], and in the references cited therein.

Note that the achievable accuracy drops rapidly as the number of dimensions increases. This is a
property of all multiplicative congruential generators and is the reason why very long periods are
needed even for samples of only a few random numbers.

Example

The example program prints the first five pseudo-random numbers from a uniform distribution
between O and 1, generated by GOSCAF after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5CAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
real X
INTEGER I
* .. External Functions .
real GO5CAF
EXTERNAL GO5CAF
* .. External Subroutines
EXTERNAL GO5CBF
* .. Executable Statements

WRITE (NOUT,*) ’GO5CAF Example Program Results’
WRITE (NOUT, *)
CALL GOS5CBF(0)
DO 20 I =1, 5

X = GO5CAF(X)
WRITE (NOUT,99999) X
20 CONTINUE
STOP

99999 FORMAT (1X,F10.4)
END
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9.2. Program Data

None.

9.3. Program Results
GOS5CAF Example Program Results

0.7951
0.2257
0.3713
0.2250
0.8787

GO5CAF

[NP1692/14)
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GO5CBF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOSCBEF sets the seed used by the basic generator in the GO5 Chapter to a repeatable initial
value.

Specification
SUBROUTINE GOSCBF (I)
INTEGER I
Description

This routine sets the internal seed used by the basic generator (see GOSCAF) to a value n,
calculated from the parameter i:

n, =2 + 1.
It then generates the value n, and discards it.

This routine will yield different subsequent sequences of random numbers if called with different
values of i, but the sequences will be repeatable in different runs of the calling program. It should
be noted that there is no guarantee of statistical properties between sequences, only within
sequences.

References
None.

Parameters
I — INTEGER. Input
On entry: a number from which the new seed is to be calculated.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints the first five pseudo-random real numbers from a uniform
distribution between 0 and 1, generated by GOSCAF after initialisation by GOSCBF.
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9.1.

9.2.

9.3.

Program Text

Note: the listing of the cxample program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5CBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989,
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real X
INTEGER I
* .. External Functions ..
real GOSCAF
EXTERNAL GO5CAF
* .. External Subroutines ..
EXTERNAL GO5CBF
* .. Executable Statements ..

WRITE (NOUT,*) ’'GO5CBF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

DO 20 I =1, 5
X = GO5CAF(X)
WRITE (NOUT,99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F10.4)
END

Program Data
None.

Program Results
GO5CBF Example Program Results

0.7951
0.2257
0.3713
0.2250
0.8787
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GOSCCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSCCF sets the seed used by the basic generator in the GO5 Chapter to a non-repeatable initial
value.

2. Specification
SUBROUTINE GOS5CCF

3. Description

This routine sets the internal seed used by the basic generator (see GOSCAF) to a value n,
calculated from the setting of the real-time clock. It then generates the value n, and discards it.

This routine will yield different subsequent sequences of random numbers in different runs of the
calling program. It should be noted that there is no quarantee of statistical properties between
sequences, only within sequences.

4. References
None.

5. Parameters
None.

6. Error Indicators and Warnings
None.

7. Accuracy

Not applicable.

8. Further Comments
None.

9. Example

The example program prints the first five pseudo-random real numbers from a uniform
distribution between 0 and 1, generated by GOSCAF after initialisation by GOSCCF. The program
should give different results each time it is run.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GOSCCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters

INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars ..

real X
INTEGER I

.. External Functions ..
real GO5CAF
EXTERNAL GO5CAF
.. External Subroutines ..
EXTERNAL GO5CCF

.. Executable Statements ..
WRITE (NOUT,*) ’GO5CCF Example Program Results’
WRITE (NOUT, *)

CALL GO5CCF

DO 201 =1, 5

X = GO5CAF(X)

WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results

GO5C

CF Example Program Results

0.3991
0.5160
0.1130
0.6615
0.6976

Page 2 (last)
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GO5CFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GOS5CFF saves the value of the seed used by the basic generator in the GO5 Chapter.

2. Specification
SUBROUTINE GOSCFF (IA, NI, XA, NX, IFAIL)

INTEGER IA(NI), NI, NX, IFAIL
real XA (NX)

3. Description

This routine saves information about the basic generator to enable GOSCGF subsequently to
restore the basic generator to its current state. The values of NI, NX, IA and XA must not be
altered between a call of GOSCFF and a call of GOSCGF.

4. References
None.

5. Parameters
IA(NI) — INTEGER array. Output
On exit: information about the generator.

2: NI - INTEGER. Input
Onentry: the dimension of the array IA as declared in the (sub)program from which
GOS5CFF is called.

Constraint: NI 2 9.

3 XA(NX) - real array. Output
On exit: information about the generator.

4: NX - INTEGER. Input
Onentry: the dimension of the array XA as declared in the (sub)program from which
GOS5CFF is called.

Constraint: NX 2 4.

5: IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1
On entry, NI < 9.

IFAIL = 2
On entry, NX < 4.
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9.1.

9.2.
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Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints 10 pseudo-random numbers generated by GOSCAF; it saves the
generator state after the 2nd, and restores it after the 7th so that the 8th, 9th and 10th numbers are
the same as the 3rd, 4th and 5th.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSCFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real R
INTEGER I, IFAIL
* .. Local Arrays
real X(5), XA(4)
INTEGER IA(9)
* .. External Functions .
real GO5CAF
EXTERNAL GOS5CAF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSCFF, GOS5CGF
* .. Executable Statements

WRITE (NOUT,*) ’GOS5CFF Example Program Results’
WRITE (NOUT, *)
CALL GOS5CBF(0)

IFAIL = 0
DO 201 =1, 5
X(I) = GO5CAF(R)

IF (I.EQ.2) CALL GOS5CFF(IA,9,XA,4,IFAIL)

20 CONTINUE
WRITE (NOUT, 99999) (X(I),I=1,5)
DO 40 I =1,
X(I) = GO5CAF(R)

IF (I.EQ.2) CALL GO5CGF(IA,9,XA,4,IFAIL)

40 CONTINUE
WRITE (NOUT,99999) (X(I),I=1,5)
STOP
*

99999 FORMAT (1X,5F10.4)
END

Program Data
None.
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9.3. Program Results
GO5CFF Example Program Results

0.7951 0.2257 0.3713 0.2250
0.0475 0.1806 0.3713 0.2250

0.8787
0.8787

GO5CFF
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GOS5CGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOS5CGF restores the value of the seed used by the basic generator in Chapter GO5 after a
previous call to GOSCFF.

Specification
SUBROUTINE GOS5CGF (IA, NI, XA, NX, IFAIL)
INTEGER IA(NI), NI, NX, IFAIL
real XA (NX)

Description

This routine restores the state of the basic generator, using information saved by a previous call
to GOSCFF.

References
None.

Parameters
IA(NI) — INTEGER array. Input

On entry: information about the generator, which must be unchanged from the previous call
to GO5SCFF.

NI - INTEGER. Input

Onentry: the dimension of the array IA as declared in the (sub)program from which
GOSCGF is called.

Constraint: NI 2 9

XA (NX) — real array. Input

On entry: information about the generator, which must be unchanged from the previous call
of GOSCFF.

NX — INTEGER. Input

Onentry: the dimension of the array XA as declared in the (sub)program from which
GOSCGF is called.

Constraint: NX 2 4

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, NI < 9,
or NX < 4.
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9.1.

9.2.

Page 2

IFAIL = 2
On entry, IA or XA has been corrupted since the previous call to GOSCFF.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints 10 pseudo-random numbers generated by GOSCAF,; it saves the
generator state after the 2nd, and restores it after the 7th, so that the 8th, 9th and 10th numbers
are the same as the 3rd, 4th and 5th.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5CGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
real R
INTEGER I, IFAIL
* .. Local Arrays ..
real X(5), XA(4)
INTEGER IA(9)
* .. External Functions
real GOS5CAF
EXTERNAL GO5CAF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOS5CFF, GOS5CGF
* .. Executable Statements

WRITE (NOUT,*) ’‘GO5CGF Example Program Results’
WRITE (NOUT, *)
CALL GOS5CBF(0)
IFAIL = 0
DO 20T =1, 5
X(I) = GO5CAF(R)

IF (I.EQ.2) CALL GOS5SCFF(IA,9,XA,4,IFAIL)

20 CONTINUE
WRITE (NOUT, 99999) (X(I),I=1,5)
DO 40 I =1,
X(I) = GO5CAF(R)

IF (I.EQ.2) CALL GO5CGF(IA,9,XA,4,IFAIL)

40 CONTINUE
WRITE (NOUT,99999) (X(I),I=1,5)
STOP

*

99999 FORMAT (1X,5F10.4)
END

Program Data
None.
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9.3. Program Results
GO5CGF Example Program Results

0.7951 0.2257 0.3713 0.2250 0.8787
0.0475 0.1806 0.3713 0.2250 0.8787
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GOSDAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

N =

Purpose

GOSDAF returns a pseudo-random real number taken from a uniform distribution over the
interval [a,b].

Specification
real FUNCTION GOS5DAF (A, B)
real A, B
Description

This distribution has PDF (probability density function)

f(x) = Ula-b| ifx e [a,b],

f(x) =0 otherwise.
The routine returns the value

x =a + (b-a)y
where y is a pseudo-random number from a uniform distribution over (0,1), generated by
GOSCAF. The routine ensures that x lies in the closed interval [a,b].
GOSFAF may be used to generate a vector of n pseudo-random numbers which are exactly the
same as n successive values of GOSDAF. On vector-processing machines GOSFAF is likely to be
much faster.

References

[1] KNUTH, D.E.
The Art of Computer Programming (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

Parameters
A —real. Input
B - real. Input

On entry: the end-points a and b of the distribution. It is not necessary that a < b.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints the first five pseudo-random real numbers from a uniform
distribution between 1.0 and 1.5, generated by GOSDAF after initialisation by GOSCBF.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GO5DAF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars ..

real X

INTEGER I

.. External Functions ..
real GO5DAF
EXTERNAL GOSDAF

.. External Subroutines ..
EXTERNAL GO5CBF

.. Executable Statements ..

WRITE (NOUT,*) ’"GOS5DAF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

DO 20 I =1, 5

X = GOS5DAF(1.0e0,1.5€0)
WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results
GOS5DAF Example Program Results

1.3976
1.1129
1.1856
1.1125
1.4394

Page 2 (last)
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GO5DBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSDBF returns a pseudo-random real number taken from a (negative) exponential distribution
with mean aq.

2. Specification
real FUNCTION GO5DBF (A)
real A

3. Description
The distribution has PDF (probability density function)

fx) = %e""“ ifx > 0,

fix) =0 otherwise.

The routine returns the value —a Iny, where y is a pseudo-random number from a uniform
distribution over (0,1), generated by GOSCAF.

GOSFBF may be used to generate a vector of n pseudo-random numbers which are exactly the
same as n successive values of GOSDBF. On vector-processing machines GOSFBF is likely to be
much faster.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

5. Parameters
A —real. Input
On entry: the parameter a of the distribution. If A is negative, its absolute value is used.

6. Error Indicators and Warnings
None.

7. Accuracy
Not applicable.

8. Further Comments
None.

9. Example

The example program prints the first five pseudo-random real numbers from a negative
exponential distribution with mean 2.0, generated by GOSDBEF after initialisation by GOSCBF.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GOSDBF Example Program Text
Mark 14 Revised. NAG Copyright 1989,

. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)
Local Scalars ..

real X

INTEGER I

.. External Functions ..

real GO5DBF

EXTERNAL GOSDBF

.. External Subroutines ..

EXTERNAL GOS5CBF

.. Executable Statements ..

WRITE (NOUT,*) ’GOS5DBF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

DO 201 =1, 5

X = GOSDBF(2.0e0)
WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results

GO5D

BF Example Program Results

0.4585
2.9769
1.9816
2.9830
0.2585

Page 2 (last)
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GOSDCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSDCF returns a pseudo-random real number taken from a logistic distribution with mean a
and spread b.

2. Specification
real FUNCTION GO5DCF (A, B)
real A, B

3. Description
The distribution has PDF (probability density function)

(x=a)/b
fo) = —2— o
b(1+e=?)?

The routine returns the value

a+b m(-y—)
1-y

where y is a pseudo-random number uniformly distributed over (0,1), generated by GOSCAF.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

5. Parameters
1:  A-real Input
On entry: the mean a, of the distribution.

2: B -—real Input

%—gx standard deviation. If B is
negative, the distribution of the generated numbers — though not the actual sequence — is the
same as if the absolute value of B were used.

On entry: the spread b, of the distribution, where ‘spread’ is

6. Error Indicators and Warnings
None.

7. Accuracy
Not applicable.

8. Further Comments
None.
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GO5 — Random Number Generators

9. Example

The

example program prints the first five pseudo-random real numbers from a logistic

distribution with mean 1.0 and spread 1.5, generated by GOSDCEF after initialisation by GO5SCBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

GO5SDCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars ..

real X
INTEGER I

.. External Functions ..
real GO5DCF
EXTERNAL GO5DCF
.. External Subroutines
EXTERNAL GO5CBF

.. Executable Statements ..

WRITE (NOUT,*) 'GOSDCF Example Program Results’
WRITE (NOUT, *)

CALL GOS5CBF(0)

DO 201 =1, 5

X = GO5DCF(1.0e0,1.5€0)

WRITE (NOUT,99999) X

20 CONTINUE

*

STOP

99999 FORMAT (1X,F10.4)

END

9.2. Program Data
None.

9.3. Program Results
GOS5DCF Example Program Results

3.0341
-0.8490
0.2099
-0.8548
3.9709

Page 2 (last)
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GO5DDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSDDF returns a pseudo-random real number taken from a normal (Gaussian) distribution
with mean g and standard deviation b.

Specification
real FUNCTION GOS5DDF (A, B)
real A, B

Description
The distribution has PDF (probability density function)
1 (x—a)?
x) = —— exp|-
fx) ™. p( 257 )
The routine uses the method of Brent [3].

GOSFDF may be used to generate a vector of n pseudo-random numbers from a Normal
distribution, but these are not the same as n successive values of GOSDDF, because GOSFDF
uses a different method. However on vector-processing machines GOSFDF is likely to be much
faster.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

[3] BRENT, R.P.
Algorithm 488.
Comm. A.C.M,, p. 704, 1974.

Parameters
A —real. Input
On entry: the mean a, of the distribution.

B — real. Input

On entry: the standard deviation b, of the distribution. If B is negative, the distribution of the
generated numbers — though not the actual sequence — is the same as if the absolute value
of B were used.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.
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9. Example

The example program prints the first five pseudo-random real numbers from a normal
distribution with mean 1.0 and standard deviation 1.5, generated by GOSDDF after initialisation
by GO5CBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5DDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real X
INTEGER I
* .. External Functions ..
real GO5DDF
EXTERNAL GOS5DDF
* .. External Subroutines ..
EXTERNAL GOS5CBF
* .. Executable Statements ..

WRITE (NOUT,*) ’GO5DDF Example Program Results’
WRITE (NOUT, *)
CALL GO5CBF(0)
DO 201 =1, 5

X = GOS5SDDF(1.0e0,1.5€0)

WRITE (NOUT,99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F10.4)
END

9.2. Program Data
None.

9.3. Program Results
GOS5DDF Example Program Results

1.8045
2.9393
3.3701
0.9602
3.2751

Page 2 (last) [NP1692/14)
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GO5DEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSDEF returns a pseudo-random real number taken from a log-normal distribution with
parameters g and b.

Specification
real FUNCTION GOSDEF (A, B)
real A, B
Description
The distribution has PDF (probability density function)
1 (Inx-a)® .
x) = —— exp|——"—" ifx >0,
&) = Bm P( 2 )
f(x) =0 otherwise,

i.e. Inx is normally distributed with mean a and standard deviation b. The routine returns the
value expy, where y is generated by GOSDDF from a Normal distribution with mean a and
standard deviation b.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
A —real. Input
On entry: the mean a, of the distribution of In x.

B - real. Input

Onentry: the standard deviation b, of the distribution of Inx. If B is negative, the
distribution of the generated numbers — though not the actual sequence — is the same as if
the absolute value of B were used.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints the first five pseudo-random real numbers from a log-normal
distribution with mean 1.0 and standard deviation 1.5, generated by GOSDEF after initialisation
by GOSCBF.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Easential Introduction to this.
manual, the results produced may not be identical for all implementations. .

*
*
*

20

*

99999

GOSDEF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NOQUT
PARAMETER (NOUT=6)
.. Local Scalars ..

real X
INTEGER I

.. External Functions ..
real GOSDEF
EXTERNAL GO5DEF
.. External Subroutines ..
EXTERNAL GO5CBF

.. Executable Statements ..

WRITE (NOUT,*) ’‘GOS5DEF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

DO 20 I =1, 5

X = GO5DEF(1.0e0,1.5€0)
WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results

GO5D

1
2

2

EF Example Program Results

6.0767
8.9017
9.0802
2.6121
6.4446

Page 2 (last)
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GOSDFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOS5DFF returns a pseudo-random real number taken from a Cauchy distribution with median a
and semi-interquartile range b.

Specification
real FUNCTION GOSDFF (A, B)
real A, B
Description
The distribution has PDF (probability density function)
1
fx) =

o+ {5))

The routine returns the value

2y, -1
a+byl ,
2

where y, and y, are a pair of consecutive pseudo-random numbers from a uniform distribution
over (0,1), generated by GOSCAF, such that

2y,-1)* +y2 <1

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
A —real. Input
On entry: the median a, of the distribution.

B — real. Input

On entry: the semi-interquartile range b, of the distribution. If B is negative, the distribution
of the generated numbers — though not the actual sequence — is the same as if the absolute
value of B were used.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.
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9. Example

The example program prints the first five pseudo-random real numbers from a Cauchy
distribution with median 1.0 and semi-interquartile range 1.5, generated by GOSDFF after
initialisation by GO5CBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5DFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real X
INTEGER I
* .. External Functions ..
real GO5DFF
EXTERNAL GOS5DFF
* .. External Subroutines ..
EXTERNAL GO5CBF
* .. Executable Statements ..

WRITE (NOUT,*) ’GOS5DFF Example Program Results’
WRITE (NOUT, *)
CALL GOS5CBF(0)
DO 20 I =1, 5

X = GOSDFF(1.0e0,1.5e0)

WRITE (NOUT,99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F10.4)
END

9.2. Program Data
None.

9.3. Program Results
GOSDFF Example Program Results

4.9225
-0.7160
24.9342
-1.2143

1.6063

Page 2 (last) [NP1692/14]
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GOSDHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Warning: the algorithm for this routine was changed at Mark 16; sequences of numbers produced by
earlier versions of this routine will not be repeatable.

1.

Purpose

GOSDHF returns a pseudo-random real number taken from a x* distribution with n degrees of
freedom.

Specification
real FUNCTION GOS5DHF (N, IFAIL)
INTEGER N, IFAIL
Description
The distribution has PDF (probability density function)
-1 ~x/2
fx) = X xe ifx >0,
2¥x (Jn—-1)!
f(x) =0 otherwise.

This is the same as a gamma distribution with parameters jn and 2; the routine calls GOSFFF with
these parameters.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters

N — INTEGER. Input
On entry: the number of degrees of freedom, n, of the distribution.
Constraint: N 2 1.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

On entry, N < 1.

Accuracy
Not applicable.
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8.

9.

9.1.

9.2.

9.3.

Further Comments
The time taken by the routine increases with n.

Example

The example program prints the first five pseudo-random real numbers from a x* distribution
with 5 degrees of freedom, generated by GOSDHF after initialisation by GO5SCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSDHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
real X
INTEGER I, IFAIL
* .. External Functions ..
real GOS5DHF
EXTERNAL GOSDHF
* .. External Subroutines
EXTERNAL GO5CBF
* .. Executable Statements

WRITE (NOUT,*) ’‘GOS5DHF Example Program Results’
WRITE (NOUT, *)

CALL GOS5CBF(0)

IFAIL = 0

DO 201 =1, 5

X = GO5DHF (5, IFAIL)

WRITE (NOUT,99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F10.4)
END

Program Data
None.

Program Results
GOS5DHF Example Program Results

6.7995
1.6156
9.0290
2.2949
3.7902

Page 2 (last) [NP2478/16)
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GO5SDJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Warning: the algorithm for this routine was changed at Mark 16; sequences of numbers produced by
earlier versions of this routine will not be repeatable.

1.

Purpose

GOSDJF returns a pseudo-random real number taken from a Student’s r-distribution with n
degrees of freedom.

Specification
real FUNCTION GOSDJF (N, IFAIL)
INTEGER N, IFAIL
Description
The distribution has PDF (probability density function)
(")
fx) =

i(n+1) "
(4n-1) !%(1#‘;—)

The routine returns the value
n

Nz

where y is generated by GOSDDF from a Normal distribution with mean 0 and standard deviation
1.0, and z is generated by GOSFFF from a gamma distribution with parameters 4 and 2 (i.e. from
a y distribution with n degrees of freedom).

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

Parameters

N — INTEGER. Input
On entry: the number of degrees of freedom, n, of the distribution.
Constraint: N 2 1

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

On entry, N < 1.

Accuracy
Not applicable.
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9.1.

9.2.

9.3.

IFAIL = 2
On entry, N < 1.

Accuracy
Not applicable.

Further Comments
The time taken by the routine increases with m and n.

Example

The example program prints the first five pseudo-random real numbers from the F-distribution
with 2 and 3 degrees of freedom, generated by GOSDKEF after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSDKF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real X
INTEGER I, IFAIL
* .. External Functions
real GO5DKF
EXTERNAL GOSDKF
* .. External Subroutines ..
EXTERNAL GO5CBF
* .. Executable Statements ..

WRITE (NOUT,*) ’‘GO5DKF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

IFAIL = 0

DO 20 I =1, 5

X = GOS5SDKF(2,3,IFAIL)

WRITE (NOUT, 99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F10.4)
END

Program Data
None.

Program Results
GOSDKF Example Program Results

0.1252
10.8233
0.7821
0.8655
0.5804

Page 2 (last) [NP2478/16)
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GOSDPF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSDPF returns a pseudo-random real number taken from a two parameter Weibull distribution
with shape parameter a and scale parameter b.

Specification
real FUNCTION GOSDPF (A, B, IFAIL)
INTEGER IFAIL
real A, B

Description

The distribution has PDF (probability density function)
fx) = %x“’l e ifx >0,

fx) =0 otherwise.

The routine returns the value (—b Iny) '“, where y is a pseudo-random number from a uniform
distribution over (0,1), generated by GOSCAF.

l/a

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters

A —real. Input
On entry: the shape parameter, a, of the distribution.
Constraint: A > 0.0.

B - real. Input
On entry: the scale parameter, b, of the distribution.
Constraint: B > 0.0.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

On entry, A < 0.0.
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IFAIL = 2
On entry, B £ 0.0.

7. Accuracy

Not applicable.

8. Further Comments

None.

9. Example

The example program prints out the first five pseudo-random real numbers from a Weibull
distribution with shape parameter 1.0 and scale parameter 2.0, generated by GOSDPF after
initialisation by GOSCBF.

9.1. Program Text

GOS5 — Random Number Generators

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GO5DPF Example Program Text
NAG Copyright 1989.

Mark 14 Revised.

.. Parameters

INTEGER NOUT

PARAMETER (NOUT=6)
Local Scalars

real X

INTEGER I, IFAIL
External Functions .

real GO5DPF

EXTERNAL GOS5DPF

.. External Subroutines

EXTERNAL GO5CBF

.. Executable Statements

WRITE (NOUT,*) ’GOSDPF Example Program Results’

WRITE (NOUT, *)
CALL GO5CBF(0)
IFAIL = 0

DO 20 I =1, 5

X = GO5DPF(1.0e€0,2.0e0, IFAIL)

WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results

GO5DPF Example Program Results

oONEFE NO

.4585
.9769
.9816
.9830
.2585

Page 2 (last)
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GOSDRF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
GOSDREF returns a pseudo-random integer variate from a Poisson distribution with mean A.
Specification
INTEGER FUNCTION GOS5DRF (ALAMDA, IFAIL)
INTEGER IFAIL
real ALAMDA
Description
The distribution of a Poisson random variable X is given by
et
P(X=x) = o ifx =0,1,2,..
PX=x) =0 otherwise.

The methods used by GOSDRF have low set-up times and are designed for efficient use when the
value of the parameter A changes during the simulation. For large samples from a distribution
with fixed A using GOSECF to set up a reference vector for subsequent use by GOSEYF may be
more efficient.

When A < 7.5 the product of uniforms method is used, see for example Dagpunar [2]. For larger
values of A an envelope rejection method is used with a target distribution:

f(x) =14 if x] <1

f(x) = 4x|? otherwise.
This distribution is generated using a ratio of uniforms method. A similar approach has also been
suggested by Ahrens and Dieter [1]. The basic method is combined with quick acceptance and
rejection tests given by MacLaren [3]. For values of A 2 87 Stirling’s approximation is used in

the computation of the Poisson distribution function, otherwise tables of factorials are used as
suggested by MacLaren [3].

References

[1] AHRENS, J.H and DIETER, U.
A Convenient Sampling Method with Bounded Computation Times for Poisson
Distributions.
Am. J. Math. Man. Sci., pp. 1-13, 1989.

[2] DAGPUNAR, J.
Principles of Random Variate Generation.
Oxford University Press, 1988.

[31 MACLAREN, N.M.
A Poisson Random Number Generator.
Personal Communication, 1990.

Parameters
ALAMDA - real. Input
On entry: the parameter, A, of the distribution.

Constraint: ALAMDA > 0.0 and 2XALAMDA < MAXINT, where MAXINT is the
largest integer representable on the machine (see X02BBF).
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9.1.

Page 2

IFAIL - INTEGER. Input! Output

Onentry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

If on exit IFAIL # 0 GOSDRF will return 0.
IFAIL = 1
On entry, ALAMDA < 0.0.

IFAIL = 2
On entry, 2xALAMDA > MAXINT.

Accuracy
Not applicable.

Further Comments

The methods used by GOSDRF have low set-up times and are designed for efficient use when the
value of the parameter A changes during the simulation. For large samples from a distribution
with fixed A using GOSECF to set up a reference vector for subsequent use by GOSEYF may be
more efficient.

Example

The example program prints five pseudo-random variates from Poisson distributions with
parameters 1, 5, 15, 50 and 100 respectively, generated by GOSDRF after initialisation by
GOS5CBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5DRF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters .
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars
real A
INTEGER IFAIL, X
* .. External Functions
INTEGER GOS5DRF
EXTERNAL GO5DRF
* .. External Subroutines
EXTERNAL GOS5CBF
* .. Executable Statements

WRITE (NOUT,*) ’'GO5DRF Example Program Results’
WRITE (NOUT, *)

* Skip heading in data file
READ (NIN, *)
IFAIL = 0

CALL GOS5CBF(0)
20 READ (NIN, *x,END=40) A

[NP2136/15)
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X = GOS5DRF (A, IFAIL)

WRITE (NOUT,99999) X
GO TO 20
40 sTOP
*
99999 FORMAT (1X,I10)
END

9.2. Program Data

GOSDRF Example Program Data
1.0

5.0

15.0

50.0

100.0

9.3. Program Results
GOS5DRF Example Program Results

1

3
14
51
121

[NP2136/15] Page 3 (last)
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GOSDYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSDYF returns a pseudo-random integer taken from a uniform distribution over the interval
[m,n].

2. Specification
INTEGER FUNCTION GO5DYF (M, N)
INTEGER M, N

3. Description
The distribution of a uniform random variable, I, is given by

P(=i) = — ifm<i<n,

P(I=i) =0 otherwise,

assuming m < n. The routine returns the value m + [(n—m+1)y] where [ ] denotes the integer
part, and y is a pseudo-random number from a uniform distribution over (0,1), generated by
GOSCAF. If m > n, the roles of m and n are reversed.

4. References

[11 KNUTH, D.E.
The Art of Computer Programming (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

5. Parameters

M - INTEGER. Input
N — INTEGER. Input

On entry: the end-points m and n of the distribution. It is not necessary that m < n.

6. Error Indicators and Warnings
None.

7. Accuracy
Not applicable.

8. Further Comments
None.

9. Example

The example program prints the first five pseudo-random integers from a uniform distribution
between —5 and 5, generated by GOSDYF after initialisation by GO5SCBF.
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9.1. Program Text

Note: the listing of the example program presented below uscs bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GOSDYF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars ..
INTEGER I, IX

.. External Functions ..
INTEGER GO5DYF
EXTERNAL GO5DYF

.. External Subroutines ..
EXTERNAL GO5CBF

.. Executable Statements ..

WRITE (NOUT,*) ’GOS5DYF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

DO 201 =1, 5

IX = GO5DYF(-5,5)
WRITE (NOUT,99999) IX
CONTINUE
STOP

FORMAT (1X,1I5)
END

9.2. Program Data
None.

9.3. Program Results
GO5DYF Example Program Results

3
-3
-1
-3

4

Page 2 (last)
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GOSDZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GO5SDZF returns a pseudo-random logical value — true with probability p and false with
probability (1-p).

Specification
LOGICAL FUNCTION GO5DZF (P)
real P

Description

The routine returns the logical value of the relation
y<p

where y is a pseudo-random number from a uniform distribution over (0,1), generated by
GO5CAF.

References

[1] KNUTH, D.E.
The Art of Computer Programming (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

Parameters
P - real. Input

On entry: the parameter p of the distribution (i.e. the probability of a true value). If p < 0,
the value O is used; if p > 1, the value 1 is used.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints the first five pseudo-random logical values generated by GOSCAF
after initialisation by GOSCBF, when the probability of a TRUE value is 0.6.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GO5DZF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters

INTEGER NOUT
PARAMETER (NOUT=6)
.. Local Scalars
INTEGER I
LOGICAL X

.. External Functions ..
LOGICAL GOSDZF
EXTERNAL GOS5DZF
.. External Subroutines
EXTERNAL GO5CBF

Executable Statements ..
WRITE (NOUT,*) ’GOS5DZF Example Program Results’
WRITE (NOUT, *)
CALL GOS5CBF(0)
DO 20I =1, 5

X = GO5DZF(0.6e0)
WRITE (NOUT,99999) X
CONTINUE
STOP

FORMAT (1X,L5)
END

9.2. Program Data

None.

9.3. Program Results

GO5D

ZF Example Program Results

e B ]

-

Page 2 (last)
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GO5EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSEATF sets up a reference vector for a multivariate Normal distribution with mean vector a and
covariance matrix C, so that GOSEZF may be used to generate pseudo-random vectors.

Specification
SUBROUTINE GO5SEAF (A, N, C, IC, EPS, R, NR, IFAIL)
INTEGER N, IC, NR, IFAIL
real A(N), C(IC,N), EPS, R(NR)
Description

When the covariance matrix is non-singular (i.e. strictly positive-definite), the distribution has
probability density function

f(x) = /Lq—-l—lexp {-(x-a)"C' (x—a)}
(2m)"

where n is the number of dimensions, C is the covariance matrix, a is the vector of means and x
is the vector of positions.

Covariance matrices are symmetric and positive semi-definite. Given such a matrix C, there
exists a lower triangular matrix L such that LLT = C. L is not unique, if C is singular.

GOSEAF decomposes C to find such an L. It then stores n, @ and L in the reference vector r for
later use by GOSEZF. GOSEZF generates a vector x of independent standard Normal
pseudo-random numbers. It then returns the vector a + Lx, which has the required multivariate
Normal distribution.

It should be noted that this routine will work with a singular covariance matrix C, provided C is
positive semi-definite, despite the fact that the above formula for the probability density function
is not valid in that case. Wilkinson [2] should be consulted if further information is required.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] WILKINSON, J.H.
The Algebraic Eigenvalue Problem.
Clarendon Press, 1965.

Parameters
A(N) — real array. Input
On entry: the vector of means, a, of the distribution.

N - INTEGER. Input
On entry: the number of dimensions, n, of the distribution.
Constraint: N > 0.

C(IC,N) — real array. Input
On entry: the covariance matrix of the distribution. Only the upper triangle need be set.
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4:

IC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
GOSEAF is called.

Constraint: IC 2 N.

EPS — real. Input
On entry: the maximum error in any element of C, relative to the largest element of C.
Constraint: 0.0 < EPS < 0.1/N.

If EPS is less than machine precision, machine precision is used.

R(NR) - real array. Output
On exit: the reference vector for subsequent use by GOSEZF.

NR — INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEAF is called.

Constraint: NR 2 ((N+1)x(N+2))/2.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1
On entry, N < 1.
IFAIL = 2

On entry, NR < ((N+1)x(N+2))/2.

IFAIL = 3
On entry, IC < N.

IFAIL = 4
On entry, EPS < 0.0,
or EPS > 0.1/N.
IFAIL = 5

The covariance matrix C is not positive semi-definite to accuracy EPS.

Accuracy

The maximum absolute error in LL”, and hence in the covariance matrix of the resulting vectors,
is less than (nxmax(EPS,€)+(n+3)€/2) times the maximum element of C, where € is the
machine precision. Under normal circumstances, the above will be small compared to sampling
error.
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8.

9.1.

Further Comments

The time taken by the routine is of order n>.

It is recommended that the diagonal elements of C should not differ too widely in order of
magnitude. This may be achieved by scaling the variables if necessary. The actual matrix
decomposed is C + E = LLT, where E is a diagonal matrix with small positive diagonal
elements. This ensures that, even when C is singular, or nearly singular, the Cholesky Factor L
corresponds to a positive-definite covariance matrix that agrees with C within a tolerance
determined by EPS.

Example

The example program prints five pseudo-random observations from a bivariate Normal
distribution with means vector

1.0
20
and covariance matrix

20 1.0
1.0 3.0

generated by GOSEAF and GOSEZF after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOS5EAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N, IC, NR
PARAMETER (N=2,IC=N,NR=(N+1)*(N+2)/2)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
INTEGER I, IFAIL, J
* .. Local Arrays
real A(N), C(IC,N), R(NR), Z(N)
* .. External Subroutines ..
EXTERNAL GOS5CBF, GOSEAF, GOSEZF
* .. Executable Statements

WRITE (NOUT,*) ’GO5EAF Example Program Results’
WRITE (NOUT, *)

A(l) = 1.0e0
A(2) = 2.0e0
C(1,1) = 2.0e0
Cc(2,2) = 3.0e0
C(1,2) = 1.0e0
C(2,1) = 1.0e0
CALL GOSCBF(0)
IFAIL = 0

CALL GO5EAF(A,N,C,IC,0.01e0,R,NR,IFAIL)

DO 20 I =1, 5
IFAIL = 0
CALL GOSEZF(Z,N,R,NR,IFAIL)
WRITE (NOUT,99999) (z(J),J=1,N)
20 CONTINUE
STOP

99999 FORMAT (1X,2F10.4)
END
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9.2. Program Data

None.

9.3. Program Results
GOS5EAF Example Program Results

RPOoOWWwR

.7697
.2678
.1769
.1055
.2933

ORFR NWd

.4481
.0583
.3651
.8395
.1850

GO5 — Random Number Generators

Page 4 (last)
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GOSEBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

iy dl v

Purpose

GOSEBF sets up the reference vector, R, for a discrete uniform distribution over the interval
[m,n].

Specification
SUBROUTINE GOSEBF (M, N, R, NR, IFAIL)
INTEGER M, N, NR, IFAIL
real R(NR)

Description

This sets up a reference vector for use in GOSEYF. Together these routines produce random
numbers from the distribution defined by:
1
PU=i) = — > . .
(I=i) P ifm<i<n,
P(I=i) =0 otherwise,
assuming m < n. If m > n, the roles of m and n are reversed.

The reference array is formed in the natural manner (described in more detail in GOSEXF).

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

Parameters
M — INTEGER. Input
N — INTEGER. Input

On entry: the endpoints m and n of the distribution. It is not necessary that m < n.

R(NR) - real array. Output
On exit: the reference vector R.

NR - INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEBEF is called.

Suggested value: approximately 5 + 1.4x|M-N| (for optimum efficiency in GOSEYF).
Constraint: NR > |M-N| + 3.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1



GOSEBF GOS5 — Random Number Generators

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1
On entry, NR < [M-N| + 3.

7. Accuracy
Not applicable.

8. Further Comments
The time taken by the routine increases with NR.

9. Example

The example program sets up a reference vector for a uniform distribution between —5 and 5, and
then prints the first five pseudo-random numbers generated by GOSEYF, after initialisation by
GO5CBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSEBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER M, N, NR
PARAMETER (M=-5,N=5,NR=19)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, IX
* .. Local Arrays ..
real R(NR)
* .. External Functions ..
INTEGER GO5EYF
EXTERNAL GOSEYF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSEBF
* .. Executable Statements ..

WRITE (NOUT,*) ’GOS5EBF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

IFAIL = 0

CALL GOS5EBF(M,N,R,NR, IFAIL)

DO 201 =1, 5
IX = GO5EYF(R,NR)
WRITE (NOUT,99999) IX
20 CONTINUE
STOP
*
99999 FORMAT (1X,I5)
END

9.2. Program Data
None.
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9.3. Program Results
GOSEBF Example Program Results
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GOSECF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GOSECF sets up the reference vector R for a Poisson distribution with mean ¢.

2. Specification
SUBROUTINE GOS5ECF (T, R, NR, IFAIL)

INTEGER NR, IFAIL
real T, R(NR)

3. Description

This sets up a reference vector for use in GOSEYF. Together these routines produce random

numbers from the distribution defined by:

ti e—r
i!

P(I=i) = ifi =0,1,..

P(I=i) =0 otherwise.
The reference array is found using a recurrence relation if 7 is less than 50 and by Stirling’s
formula otherwise.

4. References

[11 KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

5. Parameters

1: T -real Input
On entry: the mean, ¢, of the distribution.
Constraint: T 2 0.

2:  R(NR) - real array. Output
On exit: the reference vector.

3:  NR - INTEGER. Input

On entry: the dimension of the array R as declared in the (sub)program from which
GOSECF is called.

Suggested value: approximately 20 + 20x4/T (for optimum efficiency in GOSEYF).
Constraint: NR > (INT[T+7.154T+8.5]-max (0,INT[T-7.15VT]) +4).

4: TFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).
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6.

9.1.

9.2.

Page 2

GOS — Random Number Generators

Error Indicators and Warnings
Errors detected by the routine:

IFAIL

=1

On entry, T < 0.

IFAIL

=2

On entry, NR is too small (see Section 5).

Accuracy
Not applicable.

Further Comments
The time taken by the routine increases with NR.

Example

The example program sets up a reference for a Poisson distribution with mean 2.7 and then prints
the first five pseudo-random numbers generated by GOSEYF, after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GOS5ECF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
.. Parameters

real T

INTEGER NR

PARAMETER (T=2.7e0,NR=30)

INTEGER NOUT

PARAMETER (NOUT=6)

.. Local Scalars ..

INTEGER I, IFAIL, IX
Local Arrays

real R(NR)

.. External Functions ..

INTEGER GOSEYF

EXTERNAL GOSEYF

.. External Subroutines

EXTERNAL GO5CBF, GOS5SECF

.. Executable Statements ..

WRITE (NOUT,*) 'GOSECF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

IFAIL = 0

CALL GOSECF(T,R,NR, IFAIL)

DO 201 =1, 5
IX = GOSEYF(R, 30)
WRITE (NOUT, 99999) IX
CONTINUE
STOP

FORMAT (1X,1I5)
END

Program Data

None.
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9.3. Program Results
GOSECF Example Program Results

GOENE S
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GOSEDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSEDF sets up the reference vector R for a binomial distribution of the number of successes in
n trials, each with probability of success p.

2. Specification
SUBROUTINE GOSEDF (N, P, R, NR, IFAIL)

INTEGER N, NR, IFAIL
real P, R(NR)

3. Description

GOSEDF sets up a reference vector for use in GOSEYF. Together these routines produce random
numbers from the distribution defined by:
n!
i'(n=i)!
P(I=i) =0 otherwise.
The reference array is found by a recurrence relation if np(1-p) < 50; otherwise Stirling’s
approximation is used.

P(I=i) = p'(1-p)*  ifi=0,.n,

4. References

[11 KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

5. Parameters
N — INTEGER. Input
On entry: the number of trials, n, of the distribution.
Constraint: N 2 0.

2: P -—real Input
On entry: the probability of success, p, of the distribution.
Constraint: 0 < P < 1.

3:  R(NR) — real array. Output
On exit: the reference vector.

4:  NR — INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEDF is called.

Suggested value: NR = 20 + 204/NxP(1-P) approximately (for optimum efficiency in
GOSEYF).

Constraint: NR > min(N,INT[NxP+7 .ISVﬁ xP(1-P)+1])
- max(O,INT[NxP—7.15VNxP(1—P)—7.15]) + 4.
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9.1.

Page 2

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL = 1

On entry, N < 0.
IFAIL = 2

On entry, P < 0,

or P>1.
IFAIL = 3

On entry, NR is too small (see Section 5).

Accuracy
Not applicable.

Further Comments
The time taken by the routine increases with NR.

Example

The example program sets up a reference vector for a binomial distribution with » = 100 and
p = 0.5; it then prints the first five pseudo-random numbers generated by GOSEYF, after
initialisation by GO5CBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSEDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N
real P
INTEGER NR
PARAMETER (N=100,P=0.5€0,NR=125)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
INTEGER I, IFAIL, IX
* .. Local Arrays
real R(NR)
* .. External Functions
INTEGER GOSEYF
EXTERNAL GOSEYF
* .. External Subroutines
EXTERNAL GO5CBF, GOSEDF
* .. Executable Statements

WRITE (NOUT,*) ’GOSEDF Example Program Results’
WRITE (NOUT, )

CALL GOS5CBF(0)

IFAIL = 0
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CALL GOSEDF(N,P,R,NR, IFAIL)

DO 20T =1, 5
IX = GOSEYF(R,NR)
WRITE (NOUT,99999) IX
20 CONTINUE
STOP
*
99999 FORMAT (1X,I5)
END

9.2. Program Data
None.

9.3. Program Results
GOSEDF Example Program Results
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GOSEEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSEEF sets up the reference vector R for a negative binomial distribution of the number of
successes before n failures, where each trial has probability of success p.

2. Specification
SUBROUTINE GOS5SEEF (N, P, R, NR, IFAIL)

INTEGER N, NR, IFAIL
real P, R(NR)

3. Description

GOSEEF sets up a reference vector for use in GOSEYF. Together these routines produce random
numbers from the observation defined by:

(nbi=D)! ;.
——i!(n—l)!p (1-p) ifi = 0,1,...n,
P(I=i) =0 otherwise.

The reference array is generated by a recurrence relation if np < 50; otherwise Stirling’s
approximation is used.

P(I=i) =

4. References

[11 KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

5. Parameters
N — INTEGER. Input
On entry: the number of failures, n, of the distribution.
Constraint: N 2 0.

2: P -—real Input
On entry: the probability of success, p, of the distribution.
Constraint: 0.0 < P < 1.0.

3:  R(NR) — real array. Output
On exit: the reference vector.

4: NR - INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEEF is called.

Suggested value: NR = 20 + (20yNxP + 30P)/(1-P) approximately (for optimum
efficiency in GOSEYF).

Constraint: NR > im(NxP+7.151\/_I;I,xP+20.15> _ max(o,N"P’Zf;‘/ﬁ"P) .4
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9.1.

Page 2

IFAIL - INTEGER. Input/ Output

Onentry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1

On entry, N < 0.
IFAIL = 2

On entry, P < 0.0,

or P > 1.0.
IFAIL = 3

On entry, NR is too small (see Section 5).

Accuracy
Not applicable.

Further Comments
The time taken by the routine increases with NR.

Example

The example program sets up a reference vector for a negative binomial distribution with n = 50
and p = 0.5; it then prints the first five pseudo-random numbers generated by GOSEYF, after
initialisation by GO5CBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSEEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N
real P
INTEGER NR
PARAMETER (N=50,P=0.5e0,NR=250)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, IX
* .. Local Arrays
real R(NR)
* .. External Functions
INTEGER GOSEYF
EXTERNAL GOSEYF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSEEF
* .. Executable Statements

WRITE (NOUT,*) ’GOS5EEF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

IFAIL = 0
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CALL GO5EEF(N,P,R,NR, IFAIL)

DO 20 I =1, 5
IX = GOSEYF(R,NR)
WRITE (NOUT,99999) IX

20 CONTINUE

*

STOP

99999 FORMAT (1X,IS5)

END

9.2. Program Data
None.

9.3. Program Results
GOSEEF Example Program Results

58
42
46
42
62

GOSEEF
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GOSEFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOSEFF sets up a reference vector R for a hypergeometric distribution of the number of specified
items in a sample of size /, taken from a population of size n with m specified items in it.

Specification
SUBROUTINE GOSEFF (L, M, N, R, NR, IFAIL)
INTEGER L, M, N, NR, IFAIL
real R(NR)

Description

GOSEFF sets up a reference vector for use in GOSEYF. Together these routines produce random
numbers from the distribution defined by:

I'm!(n-1)!(n—m)!
i'(I-i)!(m=i)! (n—m~I+i)'n!
P(I=i) =0 otherwise.
The reference array is generated by a recurrence relation if Im(n—I)(n—m) < 50n®, otherwise
Stirling’s approximation is used.

P(I=i) = if i = max(0,m+I-n),...min(/,m),

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

Parameters

L — INTEGER. Input
On entry: the parameter (sample size) ! of the distribution.
Constraint: 0 < L < N.

M - INTEGER. Input
On entry: the parameter (number of specified items) m of the distribution.
Constraint: 0 < M < N.

N - INTEGER. Input
On entry: the parameter (population size) n of the distribution.
Constraint: N 2 0.

R(NR) - real array. Output
On exit: the reference vector.

NR - INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEFF is called.

Suggested value: NR = 20 + «/ (L><M><(N—M)x(N—L))/N3 approximately  (for
optimum efficiency in GOSEYF.

Constraint: NR must not be too small, but the limit is too complicated to specify.
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IFAIL — INTEGER. Input/Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

On entry, N is negative.

IFAIL = 2
On entry, L < 0,
or L > N.
IFAIL = 3
On entry, M < 0,
or M > N.
IFAIL = 4

On entry, NR is too small (see Section 5).

Accuracy
Not applicable.

Further Comments
The time taken by the routine increases with NR.

Example

The example program sets up a reference vector for a hypergeometric distribution with / = 100,
m = 50 and n = 1000; it then prints the first five pseudo-random numbers generated by
GOSEYF, after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uscs bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOS5EFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER L, M, N, NR
PARAMETER (L=100,M=50,N=1000,NR=62)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, IX
* .. Local Arrays
real R(NR)
* .. External Functions
INTEGER GOS5EYF
EXTERNAL GOSEYF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSEFF
* .. Executable Statements ..

WRITE (NOUT,*) ’'GOSEFF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

IFAIL = 0
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CALL GOSEFF(L,M,N,R,NR, IFAIL)

DO 20 I =1, 5
IX = GOSEYF(R,NR)
WRITE (NOUT,99999) IX
20 CONTINUE
STOP
*
99999 FORMAT (1X,I5)
END

9.2. Program Data
None.

9.3. Program Results
GOS5EFF Example Program Results

NWbh Wl
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GOSEGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSEGF sets up a reference vector for an autoregressive moving-average (ARMA) time series
model with Normally distributed errors, so that GOSEWF may be used to generate successive
terms. It also initialises the series to a stationary position.

Specification
SUBROUTINE GOSEGF (E, A, NA, B, NB, R, NR, VAR, IFAIL)
INTEGER NA, NB, NR, IFAIL
real E, A(*), B(NB), R(NR), VAR

Description

The ARMA model of such a time series in discrete time is
(x,,—E) = Al(x"_l_E) + .se + ANA(X,,_NA—E) + 318,, + oe + BNBER—NB-OJ

where x, is the value of the series at time n, and €, is a series of independent random Standard
Normal perturbations.

The routine copies A, E and B to the reference vector so that GOSEWF can generate the terms of
the series. It sets up initial values corresponding to a stationary position using the method
described in Tunnicliffe-Wilson [2].

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] TUNNICLIFFE-WILSON, G.
Some Efficient Computational Procedures for High Order ARMA Models.
J. Stat. Comput. Simulation, 8, pp. 301-309, 1979.

Parameters
E - real. Input
On entry: the mean of the time series.

A(*) — real array. Input
The dimension of A must be at least max(1,NA).
On entry: the autoregressive coefficients of the model, if any.

NA - INTEGER. Input
On entry: the number of autoregressive coefficients supplied.
Constraint: NA 2 0.

B(NB) — real array. Input
On entry: the moving-average coefficients of the model.

NB — INTEGER. Input
On entry: the number of moving-average coefficients supplied.
Constraint: NB 2 1.
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R(NR) — real array. Output
On exit: the reference vector and the recent history of the series.

NR - INTEGER. Input

Onentry. the dimension of the array R as declared in the (sub)program from which
GOS5EGEF is called.

Constraint: NR 2 NA + NB + 4 + max(NA,NB).

VAR - real. Output

Onexit: the proportion of the variance of a term in the series that is due to the
moving-average (error) terms in the model. The smaller this is, the nearer is the model to
non-stationarity.

IFAIL — INTEGER. Input! Qutput

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

On entry, NA < 0.

IFAIL = 2
On entry, NB < 1.

IFAIL = 3
On entry, NR < NA + NB + 4 + max(NA,NB).

IFAIL = 4
A does not define a stationary autoregressive process.

Accuracy

The errors in the initialisation process should be very much smaller than the error term; see
Tunnicliffe-Wilson [2].

Further Comments

The time taken by the routine is essentially of order (NA)?Z.

Note: GOSCBF, GO5CCF, GO5SCFF, and GOSCGF must be used with care if this routine is used
as well. The reference vector, as mentioned before, contains a copy of the recent history of the
series. This will not be altered properly by calls to any of the above routines. A call to GOSCBF
or GOSCCF should be followed by calls to GOSEGF to re-initialise all time series reference
vectors in use. To maintain repeatability with GO5CBF, the calls to GOSEGF should be
performed in the same order and at the same point or points in the simulation every time
GOSCBEF is used. When routines GOSCFF and GOSCGF are used to save and restore the generator
state, all the time series reference vectors in use must be saved and restored as well.

The ARMA model for a time series can also be written as:

(xt_c) = ¢1 (xt—l—c) + ... + ¢p(xt-p_c)
+a, -6, .- 064,
where

x, is the observed value of the time series at time ¢,
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p is the number of autoregressive parameters, ¢,
q 1is the number of moving average parameters, 6,,
¢ is the mean of the time series,
and a, is a series of independent random Normal perturbations with variance o°.

This is the form used in Chapter G13. This is related to the form given in Section 3 by:

B} =7,
B,,, =-6,0=-6,B,, i=12,..4,
NB =g+ 1,
E =c¢,
A, =¢, i=12..p.
and NA = p,
9. Example

This example program calls GOSEGEF to set up the reference vector for the autoregressive model
x, =04x, , +02x,, + €,

where €, is a series of independent random Standard Normal perturbations. GOSEWF is then
called 10 times to generate a sample of observations, which are printed.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5SEGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NA, NB, NR
PARAMETER (NA=2, NB=1, NR=NA+NB+4+NA)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real VAR, X
INTEGER I, IFAIL
* .. Local Arrays ..
real A(NA), B(NB), R(NR)
* .. External Functions ..
real GOSEWF
EXTERNAL GOSEWF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSEGF
* .. Executable Statements ..

WRITE (NOUT,*) ’'GO5EGF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

A(l) = 0.4e0

A(2) = 0.2e0
B(1l) = 1.0e0
IFAIL = 0

CALL GOSEGF(0.0e0,A,NA,B,NB,R,NR, VAR, IFAIL)

DO 20 I =1, 10
IFAIL = 0
X = GOSEWF(R,NR, IFAIL)
WRITE (NOUT,99999) X
20 CONTINUE
STOP

99999 FORMAT (1X,F12.4)
END
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9.2. Program Data

None.

9.3. Program Results
GOSEGF Example Program Results

HOROOOONMKN

.4084
.1987
.4778
.7998
.0452
.4125
.3784
.2166
.3510
.1631
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GOSEHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
GOSEHF performs a pseudo-random permutation of a vector of integers.

2. Specification
SUBROUTINE GOSEHF (INDEX, N, IFAIL)
INTEGER INDEX(N), N, IFAIL

3. Description

The routine permutes the elements of INDEX without inspecting their values. Each of the n!
possible permutations of the n values may be regarded as being equiprobable.

If n is 20 or more, it is theoretically impossible that all n! permutations may occur, as n! exceeds
the cycle length of GOSCAF. For practical purposes this is irrelevant, as the time necessary to
generate all possible permutations is many millenia.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 2).
Griffin, London, (3rd Edition) 1969.

5. Parameters

1:  INDEX(N) — INTEGER array. Input/ Output
On entry: the n integer values to be permuted.
On exit: the n permuted integer values.

2: N - INTEGER. Input
On entry: the number of values to be permuted.
Constraint: N 2 1.

3: IFAIL - INTEGER. Input/ Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1
On entry, N < 1.

7. Accuracy
Not relevant.
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Further Comments
The time taken by the routine is of order n.

In order to permute other kinds of vectors, or matrices of higher dimension, the following
technique may be used:

(a) Set INDEX(i) =i,fori = 12,..,n

(b) Use GOSEHF to permute INDEX

(¢) Use the contents of INDEX as a set of indices to access the relevant vector or matrix.

In order to divide pseudo-randomly a vector or matrix into subgroups of chosen sizes, a similar
procedure may be used. INDEX is first set to the number of 1’s, 2’s, efc., corresponding to the
size of each group, then permuted, and used to index the groups.

Example

A vector containing the first 8 positive integers in ascending order is permuted and the
permutation is printed. This is repeated a total of 10 times.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOS5EHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER N
PARAMETER (N=8)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J, K, M
* .. Local Arrays ..
INTEGER INDEX(N)
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSEHF
* .. Executable Statements ..

WRITE (NOUT,*) ‘GOSEHF Example Program Results’
WRITE (NOUT, *)
M = 10
CALL GOS5SCBF(0)
WRITE (NOUT,99998) M, ’ Permutations of first ’, N, ’ integers’
WRITE (NOUT, *)
DO 40 J =1, M
DO 201 =1, N
INDEX(I) = I
20 CONTINUE
IFAIL = 0

CALL GOSEHF ( INDEX,N, IFAIL)

WRITE (NOUT,99999) (INDEX(K),K=1,N)
40 CONTINUE
STOP
*
99999 FORMAT (1X,8I3)
99998 FORMAT (1X,I2,A,I1,A)
END

Program Data
None.
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9.3. Program Results
GOSEHF Example Program Results

10 Permutations of first 8 integers
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GOSEJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
GOSEJF selects a pseudo-random sample without replacement from an integer vector.
Specification
SUBROUTINE GOS5SEJF (IA, N, IB, M, IFAIL)
INTEGER IA(N), N, IB(M), M, IFAIL
Description

The routine selects m elements from vector IA of length n and places them in vector IB. Their
order in IA will be preserved in IB. Each of the (nm possible combinations of elements of 1A
may be regarded as being equiprobable.

If n is greater than 60, it is theoretically impossible that all combinations of size m may occur,
unless m is near 1 or near n. This is because (:1) exceeds the cycle length of GOSCAF. For

practical purposes this is irrelevant, as the time taken to generate all possible combinations is
many millenia.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, 1969, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, London, (3rd Edition) 1969.

Parameters
IA(N) — INTEGER array. Input
On entry: the population to be sampled.

N — INTEGER. Input
On entry: the number of elements in the vector to be sampled.
Constraint: N 2 1.

IB(M) — INTEGER array. Output
On exit: the selected sample.

M — INTEGER. Inpur
On entry: the sample size.
Constraint: 1 < M < N.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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Error Indicators and Warnings
Errors detected by the routine:

IFAIL =1

On entry, N < 1.
IFAIL = 2

Onentry, M < 1,

or M > N.
Accuracy

Not relevant.

Further Comments
The time taken by the routine is of order n.

In order to sample other kinds of vectors, or matrices of higher dimension, the following
technique may be used:

(a) SetIA(i) =i, fori =1.2,..,n
(b) Use GOSEJF to take a sample from IA and put it into IB
(c) Use the contents of IB as a set of indices to access the relevant vector or matrix.

In order to divide a population into several groups, GOSEHF (q.v.) is more efficient.

Example

From a vector containing the first 8 positive integers in ascending order, random samples of size
1,2,...,8 are selected and printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5EJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N
PARAMETER (N=8)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, K, M
* .. Local Arrays ..
INTEGER IA(N), IB(N)
* .. External Subroutines ..
EXTERNAL GO5CBF, GOS5EJF
* .. Executable Statements

WRITE (NOUT,*) ’'GOSEJF Example Program Results’
WRITE (NOUT, x)
CALL GO5CBF(0)
WRITE (NOUT,99999) ’'Samples from the first ’, N, ’ integers’
WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Sample size Values’
DO 20T =1, N
IA(I) =1
20 CONTINUE
DO 40 M =1, N
IFAIL = 0
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CALL GOS5EJF(IA,N,IB,M,IFAIL)

WRITE (NOUT,99998) M, (IB(K),K=1l,6M)
40 CONTINUE
STOP

*

99999 FORMAT (1X,A,Il,A)
99998 FORMAT (1X,I6,10X,8I3)
END

9.2. Program Data
None.

9.3. Program Results
GO5EJF Example Program Results
Samples from the first 8 integers

Sample size Values
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GOSEWF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSEWF returns the next term from an autoregressive moving-average time series using a
reference vector set up by GOSEGF.

Specification
real FUNCTION GOSEWF (R, NR, IFAIL)
INTEGER NR, IFAIL
real R(NR)

Description

The routine generates the next term in the autoregressive series and stores it in a circular buffer
in the reference vector. It then applies the moving-average summation and returns the result. This
is equivalent to the ARMA model described under GOSEGF.

References

[1] TUNNICLIFFE-WILSON, G.
Some Efficient Computational Procedures for High Order ARMA Models.
J. Stat. Comput. Simulation, 8, pp. 301-309, 1979.

Parameters

R(NR) — real array. Input/ Output
On entry: the reference vector as set up by GOSEGF.
On exit: the updated reference vector.

NR — INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GO5SEWEF is called.

This should be the same as in the preceding call of GOSEGF.

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1

NR has been changed or R corrupted since it was set up by GOSEGF, or since its last use by
GO5EWF.

Accuracy
Not applicable.
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Further Comments

The time taken by the routine is of order (NA+NB), where NA is the number of autoregressive
coefficients, and NB the number of moving-average coefficients, in the underlying model.

The comments made in Section 8 of the document for GOSEGF, concerning the use of GOSCBF,
GO5CCF, GO5CFF and GO5CGF, must be read before using this routine.

Although the reference vector may be copied like any other array, inexperienced users are
strongly advised not to keep more than a single copy. Copying it at any point has the effect of
starting a new, independent time series with an identical history. This facility may be useful, but
it is clearly a fruitful source of confusion if misused or used by accident.

Example
This example program calls GOSEGF to set up the reference vector for the autoregressive model
x, =04x,_, +02,, + ¢,

where &, is a series of independent random Standard Normal perturbations. GOSEWF is then
called 10 times to generate a sample of observations, which are printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSEWF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NA, NB, NR
PARAMETER (NA=2,NB=1,NR=NA+NB+4+NA)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
real VAR, X
INTEGER I, IFAIL
* .. Local Arrays
real A(NA), B(NB), R(NR)
* .. External Functions .
real GOSEWF
EXTERNAL GOSEWF
* .. External Subroutines ..
EXTERNAL GO5CBF, GOS5EGF
* .. Executable Statements

WRITE (NOUT,*) ’‘GOS5EWF Example Program Results’
WRITE (NOUT, %)
CALL GO5CBF(0)

A(l) = 0.4e0
A(2) = 0.2e0
B(l) = 1.0e0
IFAIL = 0

CALL GOSEGF(0.0e€0,A,NA,B,NB,R,NR, VAR, IFAIL)

DO 20 I =1, 10
IFAIL = 0
X = GOSEWF(R,NR, IFAIL)
WRITE (NOUT,99999) X
20 CONTINUE
STOP
*
99999 FORMAT (1X,F12.4)
END

Program Data
None.
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9.3. Program Results
GOSEWF Example Program Results

2.4084
1.1987
2.4778
0.7998
0.0452
0.4125
0.3784
-1.2166
-0.3510
1.1631
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GOSEXF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Uscrs’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSEXF sets up the reference vector R for a discrete distribution with PDF (probability density
function) or CDF (cumulative distribution function) P.

2. Specification
SUBROUTINE GO5SEXF (P, NP, IP, LP, R, NR, IFAIL)

INTEGER NP, IP, NR, IFAIL
real P(NP), R(NR)
LOGICAL LP

3. Description

GOSEXF sets up a reference vector R for use in GOSEYF according to information supplied by
the user in P. This may either be the PDF or CDF of the distribution. The reference vector
contains the CDF of the distribution in its higher elements, preceded by an index of the form:

R(1) = the number of elements of index, k

R(2) = the value of IP — the (possibly non-positive) subscript in R of the element of the CDF
corresponding to P(1) [i.e. R(2) < IP — (k+3)].

R(i+2) = min{j|CDF(j)>(i-1)/k}, i=12,.k

R(i), i = k+3,..,NR, the CDF.

4. References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

5. Parameters
1:  P(NP) — real array. Input
On entry: the PDF or CDF of the distribution.

2: NP — INTEGER. Input

On entry: the dimension of the array P as declared in the (sub)program from which
GOS5EXF is called.

Constraint: NP > 0.

3: IP — INTEGER. Input

On entry: the value of the variate, assumed to be a whole number, to which the probability
in P(1) corresponds.

4 LP - LOGICAL. Input

On entry: LP indicates the type of information contained in P. If LP is .TRUE., P contains
a cumulative distribution function (CDF); if LP is .FALSE., P contains a probability
density function (PDF).
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5:  R(NR) - real array. Outpur
On exit: the reference vector R (see Section 3).

6: NR — INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEXF is called.

Suggested value: NR = 5 + 14xNP approximately (for optimum efficiency in
GOSEYF).

Constraint: NR > NP + 2.

7: IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:
IFAIL = 1
On entry, NP < 1.

IFAIL = 2
On entry, NR < NP + 2.

IFAIL = 3

If LP is .TRUE. on entry, then the values in P are not all in non-descending order, as
required by a CDF. If LP is .FALSE., then at least one of the probabilities in P is negative,
or all the probabilities are zero.

IFAIL = 4

The total probability is not 1. In this case, R is set up correctly since the error may be due
to larger rounding errors than expected.

7. Accuracy
Not applicable.

8. Further Comments
None.
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9. Example
The example program sets up a reference vector for a distribution whose CDF, f(n), is defined
as follows:
n f(n)
0 0.0
1 0.1
2 0.2
3 04
4 0.5
5 0.6
6 0.8
7 09
8 1.0
9 1.0
It then prints the first five pseudo-random numbers generated by GOSEXF, after initialisation by

GO5CBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

*

99999

GOSEXF Example Program Text
Mark 14 Revised. NAG Copyright 1989.

.. Parameters ..

INTEGER NP, NR

PARAMETER (NP=10,NR=19)

INTEGER NOUT

PARAMETER (NOUT=6)

.. Local Scalars ..

INTEGER I, IFAIL, IX

.. Local Arrays ..

real P(NP), R(NR)

.. External Functions .

INTEGER GOSEYF

EXTERNAL GOSEYF

.. External Subroutines ..

EXTERNAL GOS5CBF, GOSEXF

.. Data statements ..

DATA P/0.0e0, 0.1le0, 0.2e0, 0.4e0, 0.5e0, 0.6e0,
+ 0.8e0, 0.9¢0, 1.0e0, 1.0e0/

.. Executable Statements ..

WRITE (NOUT,*) ’GOSEXF Example Program Results’
WRITE (NOUT, *)

CALL GOSCBF(0)

IFAIL = 0

CALL GOSEXF(P,NP,0, .TRUE.,R,NR, IFAIL)

DO 20I =1, 5
IX = GOSEYF(R,NR)
WRITE (NOUT,99999) IX
CONTINUE
STOP

FORMAT (1X,1I5)
END

9.2. Program Data

None.
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9.3. Program Results
GOSEXF Example Program Results

NSWwwo
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GOSEYF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOSEYF returns a pseudo-random integer taken from a discrete distribution defined by a
reference vector R.

Specification
INTEGER FUNCTION GOSEYF (R, NR)
INTEGER NR
real R(NR)
Description

This routine is designed for use in conjunction with other routines in this chapter, which set up
the reference vector R for specific distributions or according to a distribution specified in terms
of the PDF (probability density function) or CDF (cumulative distribution function). See the
GO05 Chapter Introduction.

The routine generates a random number x from GO5SCAF and searches the CDF in R for the
smallest value y such that CDF(y) 2 x and CDF(y—1) < x. R will contain an index to speed
this process and the more space allotted to R the faster this will become.

References

[11 KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
R(NR) — real array. Input
On entry: the reference vector R.

NR - INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEYF is called. It must be the same as the value of NR specified in a call to a routine to
set up the reference vector.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments

The time taken by the routine decreases as the space allotted to the index part of R increases.
There is a point, depending on the distribution, where the improvement becomes very small and
the recommended values for NR in other routines are designed to approximate this point.
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9. Example

The example program calls GOSECF to set up a reference vector for a Poisson distribution with
mean 2.7; it then prints the first five pseudo-random numbers generated by GOSEYF after
initialisation by GOSCBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOS5EYF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..
real T
INTEGER NR
PARAMETER (T=2.7e0,NR=30)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..

INTEGER I, IFAIL, IX

* .. Local Arrays ..
real R(NR)

* .. External Functions ..
INTEGER GOSEYF
EXTERNAL GOSEYF

* .. External Subroutines ..
EXTERNAL GO5CBF, GOSECF

.. Executable Statements ..

WRITE (NOUT,*) ’'GOSEYF Example Program Results’
WRITE (NOUT, *)

CALL GO5CBF(0)

IFAIL =0

CALL GOSECF(T,R,NR,IFAIL)
DO20I =1, 5
IX = GO5EYF(R,NR)
WRITE (NOUT,99999) IX
20 CONTINUE

STOP
*

99999 FORMAT (1X,I5)
END

9.2. Program Data
None.

9.3. Program Results
GOSEYF Example Program Results

OHENHB
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GOSEZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSEZF generates a pseudo-random multivariate Normal vector taken from a distribution
described by a reference vector set up by GOSEAF.

Specification
SUBROUTINE GOSEZF (Z, N, R, NR, IFAIL)
INTEGER N, NR, IFAIL
real Z(N), R(NR)

Description

This routine is designed for use in conjunction with GOSEAF. The description of GOSEAF should
be referred to for a specification of the operation of these two routines.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
Z(N) — real array. Output
On exit: the pseudo-random multivariate Normal vector generated by the routine.

N — INTEGER. Input

On entry: the dimension, n, of the distribution. This must be the same as was set up in the
reference vector by GOSEAF.

Constraint: N 2 1.,

R(NR) - real array. Input
On entry: the reference vector as set up by GOSEAF.

NR - INTEGER. Input

Onentry: the dimension of the array R as declared in the (sub)program from which
GOSEZF is called. It must be the same as the value of NR specified in the call to GOSEAF
to set up the reference vector.

Constraint: NR 2 (N+1) (N+2)/2.

IFAIL - INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).
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Error Indicators and Warnings
Errors detected by the routine:
IFAIL =1

On entry, N < 1,

GO5 — Random Number Generators

or N is not the same as when R was set up by GO5SEAF. This is likely to be due to

corruption of R.

IFAIL = 2
On entry, NR < (N+1)(N+2)/2.

Accuracy

The accuracy is discussed in the routine document for GOSEAF.

Further Comments
The time taken by the routine is of the order
a + bxn + cxn?

where a and b are appreciably (say 10-20 times) larger than c.

Example

The example program prints five pseudo-random observations from a bivariate Normal

distribution with means vector
[I.O}
2.0

and covariance matrix

20 1.0
1.0 3.0

generated by GOSEAF and GOSEZF after initialisation by GOSCBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this

manual, the results produced may not be identical for all implementations.

* GO5EZF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER N, NR, IC
PARAMETER (N=2,NR=(N+1)*(N+2)/2,IC=N)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars
INTEGER I, IFAIL, J
* .. Local Arrays
real A(N), C(IC,N), R(NR), Z(N)
* .. External Subroutines ..
EXTERNAL GOS5CBF, GOS5EAF, GOS5EZF
* .. Executable Statements

WRITE (NOUT,*) ‘GO5EZF Example Program Results’

WRITE (NOUT, *)

A(l) = 1.0e0
A(2) = 2.0e0
C(1,1) = 2.0e0
C(2,2) = 3.0e0
C(1,2) = 1.0e0
C(2,1) = 1.0e0
CALL GOSCBF(0)
IFAIL = 0
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CALL GO5EAF(A,N,C,IC,0.0l1e0,R,NR,IFAIL)
DO 20T =1, §
CALL GOSEZF(z,N,R,NR, IFAIL)

WRITE (NOUT,99999) (z(J),Jd=1,N)
20 CONTINUE
STOP
*
99999 FORMAT (1X,2F10.4)
END

9.2. Program Data
None.

9.3. Program Results
GO5EZF Example Program Results

.7697 4.4481
.2678 3.0583
.1769 2.3651
.1055 1.8395
.2933 -0.1850

RPoWWwPR

GOSEZF
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GOSFAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

el

Purpose

GOSFAF generates a vector of pseudo-random numbers uniformly distributed over the interval
[a,b].

Specification
SUBROUTINE GOSFAF (A, B, N, X)
INTEGER N
real A, B, X(N)
Description

Ifa = 0and b = 1, GOSFAF returns the next n values y; from the basic uniform (0,1) generator
(see GOSCAF for details).

For other values of a and b, GOSFAF applies the transformation
x; = a + (b-a)y,
The routine ensures that the values x; lie in the closed interval [a,b].

GOSFAF always generates exactly the same pseudo-random numbers as would n consecutive
calls of GOSCAF or GOSDAF, and on vector-processing machines is likely to be much faster.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

Parameters
A —real. Input
B - real. Input

On entry: the end-points a and b of the uniform distribution. It is not necessary that a < b.

N — INTEGER. Input
On entry: the number n of pseudo-random numbers to be generated.

X(N) — real array. Output
On exit: the n pseudo-random numbers from the specified uniform distribution.

Error Indicators and Warnings
None.

Accuracy
Not applicable.

Further Comments
None.

Example

The example program prints 5 pseudo-random numbers from a uniform distribution between 1.0
and 1.5, generated by a single call to GOSFAF, after initialization by GO5CBF.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

*

99999

GOS5FAF Example Program Text
Mark 14 Release. NAG Copyright 1989.

.. Parameters

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=5)

.. Local Scalars ..
INTEGER I

.. Local Arrays ..

real X(N)

.. External Subroutines ..
EXTERNAL GO5CBF, GOSFAF

.. Executable Statements ..
WRITE (NOUT,*) ’"GOS5FAF Example Program Results’
CALL GOSCBF(0)

CALL GOSFAF(1.0e0,1.5e0,N,X)

WRITE (NOUT,99999) (X(I),I=1,N)
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results
GOS5FAF Example Program Results

1.3976
1.1129
1.1856
1.1125
1.4394

Page 2 (last)
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GOSFBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSFBF generates a vector of pseudo-random numbers taken from a (negative) exponential
distribution with mean a.

Specification
SUBROUTINE GOSFBF (A, N, X)
INTEGER N
real A, X(N)
Description

The distribution has PDF (probability density function)
flx) = %e""' if x>0,

fix) =0 otherwise.
The routine returns the values
x; =-alny,

where y; are the next n numbers generated by the basic uniform (0,1) generator.

GOS5FBF always generates exactly the same pseudo-random numbers as would n consecutive
calls of GOSDBF, but on vector-processing machines is likely to be much faster.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
A —real. Input
On entry: the parameter a of the distribution. If A is negative, its absolute value is used.

N — INTEGER. Input
On entry: the number n of pseudo-random numbers to be generated.

X(N) — real array. Output
On exit: the n pseudo-random numbers from the specified exponential distribution.

Error Indicators and Warnings
None.

Accuracy
Not applicable.
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8. Further Comments
None.

9. Example

The example program prints 5 pseudo-random numbers from an exponential distribution with
mean 2.0, generated by a single call to GO5FBF, after initialization by GOSCBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5FBF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=5)
* .. Local Scalars ..
INTEGER I
* .. Local Arrays ..
real X(N)
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSFBF
* .. Executable Statements ..

WRITE (NOUT,*) ’'GO5FBF Example Program Results’
CALL GOSCBF(0)

CALL GOSFBF(2.0e0,N,X)

WRITE (NOUT,99999) (X(I),I=1,N)
STOP

*

99999 FORMAT (1X,F10.4)
END

9.2. Program Data
None.

9.3. Program Results

GOS5FBF Example Program Results
0.4585
2.9769
1.9816
2.9830
0.2585
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GOSFDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOSFDF generates a vector of pseudo-random numbers taken from a Normal (Gaussian)
distribution with mean 4 and standard deviation b.

Specification
SUBROUTINE GOSFDF (A, B, N, X)
INTEGER N
real A, B, X(N)
Description

The distribution has PDF (probability distribution function)

1 (x—a)2
x) = exp (- .
&) = ( 257 )
The routine uses the Box-Muller method.

The routine does not generate the same pseudo-random numbers as would n consecutive calls of
GO5DDF, because GOSDDF uses a different method. However on vector-processing machines
GOSFDF is likely to be much faster.

References

[1] KNUTH, D.E.
The Art of Computer Programming, (Vol. 2).
Addison-Wesley, (2nd Edition) 1981.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, (Vol. 1).
Griffin, (3rd Edition) 1969.

Parameters
A —real. Input
On entry: the mean, a, of the distribution.

B — real. Input

On entry: the standard deviation, b, of the distribution. If B is negative, the distribution of
the generated numbers — though not the actual sequence — is the same as if the absolute
value of B were used.

N — INTEGER. Input
On entry: the number n of pseudo-random numbers to be generated.

X(N) - real array. Output
On exit: the n pseudo-random numbers from the specified Normal distribution.

Error Indicators and Warnings
None.

Accuracy

The generated numbers conform to a Normal distribution with an accuracy of
Vmachine precision.
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8. Further Comments
None.

9. Example

The example program prints 5 pseudo-random numbers from a Normal distribution with mean
1.0 and standard deviation 1.5, generated by a single call to GOSFDF, after initialization by
GO5CBF.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSFDF Example Program Text
* Mark 14 Release. NAG Copyright 1989.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=5)
* .. Local Scalars
INTEGER I
* .. Local Arrays
real X(N)
* .. External Subroutines ..
EXTERNAL GO5CBF, GOSFDF
* .. Executable Statements

WRITE (NOUT,*) ’GOS5FDF Example Program Results’
CALL GOS5CBF(0)

CALL GOSFDF(1.0e0,1.5€0,5,X)

WRITE (NOUT,99999) (X(I),I=1,N)
STOP

*

99999 FORMAT (1X,F10.4)
END

9.2. Program Data
None.

9.3. Program Results

GO5FDF Example Program Results
.1544
.0039
.3299
.0856
.7290

HWHNR
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GOSFEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSFEF generates a vector of pseudo-random variates from a beta distribution with parameters
a and b.

2. Specification
SUBROUTINE GOSFEF (A, B, N, X, IFAIL)

INTEGER N, IFAIL
real A, B, X(N)

3. Description
The beta distribution has PDF (probability density function):
_ I(a+b)
) = Rayrisy
f(x) =0 otherwise.

One of four algorithms is used to generate the variates depending on the values of ¢ and b. Let
a be the maximum and J be the minimum of g and b. Then the algorithms are as follows:

fa<05

Johnk’s algorithm is used, see for example Dagpunar [3]. This generates the beta variate as

ui"/(u}'"+uy™), where u, and u, are uniformly distributed random variates.

Fpg>1

The algorithm BB given by Cheng [2] is used. This involves the generation of an
observation from a beta distribution of the second kind by the envelope rejection method
using a log-logistic target distribution and then transforming it to a beta variate.

Fa>1land <1
The switching algorithm given by Atkinson [1] is used. The two target distributions used are
fi(x) = Bxf and £, (x) = a(1-x)"", along with the approximation to the switching
parameter of t = (1-)/(a+1-p).

In all other cases
Cheng’s BC algorithm, see [2], is used with modifications suggested by Dagpunar [3]. This
algorithm is similar to BB, used when 8 > 1, but is tuned for small values of a and b.

x N (1-x)t! f0<x<1;ab>00

4. References
[1] ATKINSON, A.C.
A Family of Switching Algorithms for the Computer Generation of Beta Random Variates.
Biometrika, 66, pp. 141-5, 1979.
[2] CHENG, R.C.H.

Generating Beta Variates with Nonintegral Shape Parameters.
Comm. ACM, Vol. 21, No. 4, pp. 317-322, April, 1978.

[3] DAGPUNAR, J.
Principles of Random Variate Generation.
Oxford University Press, 1988.

[4] HASTINGS, N.AJ. and PEACOCK, J.B.
Statistical Distributions.
Butterworths, 1975.
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Parameters

A —real. Input
On entry: the parameter, a, of the beta distribution.
Constraint: A > 0.0.

B — real. Input
On entry: the parameter, b, of the beta distribution.
Constraint: B > 0.0.

N - INTEGER. Input
On entry: the number, n, of pseudo-random numbers to be generated.
Constraint: N 2 1.

X(N) — real array. Output
On exit: the n pseudo-random variates from the specified beta distribution.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message

unit (as defined by X04AAF).

IFAIL =1
On entry, A < 0.
or B <0
or N<1

0,
0,

Accuracy
Not applicable.

Further Comments

To generate an observation, y, from the beta distribution of the second kind from an observation,
x, generated by GOSFEF the transformation, y = x/(1-x), may be used.

Example

The example program prints a set of five pseudo-random variates from a beta distribution with
parameters @ = 2.0 and b = 2.0, generated by GOSFEF after initialisation by GO5CBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSFEF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..

INTEGER NOUT

PARAMETER (NOUT=6)

INTEGER N

PARAMETER (N=5)
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*

99999

Local Scalars ..

INTEGER IFAIL, J
Local Arrays

real X(N)

.. External Subroutines ..

EXTERNAL GOS5CBF, GOS5SFEF

Executable Statements ..
WRITE (NOUT,*) ’'GOS5FEF Example Program Results’
WRITE (NOUT, *)
IFAIL = 0
CALL GOS5CBF(0)
WRITE (NOUT,*) ’‘Beta Dist ——- A=2.0, B=2.0’

CALL GOSFEF(2.0e0,2.0e0,N,X,IFAIL)

WRITE (NOUT,99999) (X(J),J=1,N)
STOP

FORMAT (1X,F10.4)
END

9.2. Program Data

None.

9.3. Program Results

GOS5F

Beta

EF Example Program Results

Dist —— A=2.0, B=2.0
0.7229
0.4079
0.8023
0.2555
0.0946

GOSFEF
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GO5FFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GOSFFF generates a vector of pseudo-random variates from a gamma distribution with
parameters a and b.

2. Specification
SUBROUTINE GOSFFF (A, B, N, X, IFAIL)

INTEGER N, IFAIL
real A, B, X(N)

3. Description
The gamma distribution has PDF (probability density function):

fx) = L et if0<x;a b>00
b*I'(a)
flx) =0 otherwise.
One of three algorithms is used to generate the variates depending upon the value of a:
Ifa <1

A switching algorithm described by Dagpunar [3] (called G6), is used. The target
distributions are f, (x) = cax®"'/t* and f,(x) = (1-c)e %", where ¢ = t(t+ae™), and
the switching parameter, ¢, is taken as 1-a. This is similar to Ahrens and Dieter’s GS
algorithm [1] in which ¢ = 1.

Ifa =1
The gamma distribution reduces to the exponential distribution and the method based on the
logarithmic transformation of a uniform random variate is used.

Ifa > 1

The algorithm given by Best [2] is used. This is based on using a Student’s r-distribution
with two degrees of freedom as the target distribution in an envelope rejection method.

4. References

[1] AHRENS, J.H. and DIETER, U.
Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions.
Comput., 12, pp. 223-46, 1974.

[2] BEST, DJ.
Letter to the Editor.
Appl. Statist., 29, p. 181, 1978.

[3] DAGPUNAR,J.
Principles of Random Variate Generation.
Oxford University Press, 1988.

[4] HASTINGS, N.AJ. and PEACOCK, J.B.
Statistical Distributions.
Butterworths, 1975.

5. Parameters
A - real. Input
On entry: the parameter, a, of the gamma distribution.
Constraint: A > 0.0.
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B - real. Input
On entry: the parameter, b, of the gamma distribution.
Constraint: B > 0.0.

N - INTEGER. Input
On entry: the number, n, of pseudo-random numbers to be generated.
Constraint: N 2 1.

X(N) - real array. Output
On exit: the n pseudo-random variates from the specified gamma distribution.

IFAIL - INTEGER. Input! Qutput

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, A < 0.0,
or B < 0.0,
or N < 1L
Accuracy

Not applicable.

Further Comments
None.

Example

The example program prints a set of five pseudo-random variates from a gamma distribution with
parameters @ = 5.0 and b = 1.0, generated by GOSFFF after initialisation by GO5CBF.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOS5FFF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=5)
* .. Local Scalars ..
INTEGER IFAIL, J
* .. Local Arrays ..
real X(N)
* .. External Subroutines ..
EXTERNAL GOS5CBF, GOSFFF
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*

99999

.. Executable Statements ..

WRITE (NOUT,*) ’'GOSFFF Example Program Results’
WRITE (NOUT, *)

IFAIL = 0

CALL GOS5CBF(0)

WRITE (NOUT,*) ’Gamma Dist —-—- A=5.0, B=1.0’

CALL GOS5FFF(5.0e0,1.0e0,N,X, IFAIL)

WRITE (NOUT,99999) (X(J),J=1,N)
STOP

FORMAT (1X,F10.4)
END

9.2, Program Data

None.

9.3. Program Results

GOSF

FF Example Program Results

Gamma Dist —-—— A=5.0, B=1.0

6.7603
2.9943
8.3800
4.5740
4.9672

GOSFFF
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GOSFSF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GOSFSF generates a vector of pseudo-random variates from a von Mises distribution with
concentration parameter K.

Specification
SUBROUTINE GOSFSF (VK, N, T, IFAIL)
INTEGER N, IFAIL
real VK, T(N)

Description

The von Mises distribution is a symmetric distribution used in the analysis of circular data. The
probability density function of this distribution on the circle with mean direction i, = 0 and
concentration parameter kappa, k, can be written as:

excocO

O = 5t
where 8 is reduced modulo 27 so that -z < 6 < mand x 2 0. For very small x the distribution
is almost the uniform distribution, whereas for x — oo all the probability is concentrated at one
point.
The n variates, 6,,0,,...,0,, are generated using an envelope rejection method with a wrapped
Cauchy target distribution as proposed by Best and Fisher [1] and described by Dagpunar [2].

References

(1] BEST, DJ. and FISHER, N.L
Efficient simulation of the von Mises distribution.
Appl. Statist., 28, pp. 152-157, 1979.

[2] DAGPUNAR, J.
Principles of Random Number Generation.
Oxford University Press, 1988.

[3] MARDIA, K.V.
Statistics of Directional Data.
Academic Press, London and New York, Ch. 3.4.9, 1972.

Parameters

VK - real. Input
On entry: the concentration parameter, K, of the required von Mises distribution.
Constraint: VK > 0.0.

N — INTEGER. Input
On entry: the number of random variates required, n.
Constraint: N 2 1.

T(N) — real array. Output
On exit: the n random variates from the specified von Mises distribution, 6,,6,....,6,.
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IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, VK < 0.0,
or N <1

Accuracy
Not applicable.

Further Comments
For a given number of random variates the generation time increases slightly with increasing .

If VK is supplied too large (i.e. VK > SQRT(X02ALF())) then floating point overflow will
occur in internal calculation.

Example
A set of 4 random variates from a von Mises distribution with x = 2.0 are generated and printed.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GOSFSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=10)
* .. Local Scalars
INTEGER I, IFAIL
* .. Local Arrays
real X(N)
* .. External Subroutines ..
EXTERNAL GO5CBF, GOS5FSF
* .. Executable Statements

WRITE (NOUT,*) ’GOSFSF Example Program Results’
WRITE (NOUT, *x)

IFAIL = 0

CALL GOSCBF(0)

WRITE (NOUT,*) ‘Von Mises Dist -—— VK = 2.0’
CALL GOS5FSF(2.0e0,N, X, IFAIL)

WRITE (NOUT,99999) (X(I),I=1,N)
STOP

99999 FORMAT (1X,F10.4)
END
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9.2. Program Data
None.

9.3. Program Results
GO5FSF Example Program Results

Von Mises Dist ——— VK = 2.0
-1.6218
-0.2575
-0.2038

0.8379
-1.0074
-0.6629
-0.0986

0.0252

0.2702
-0.5739
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GO5GAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOS5GAF generates a random orthogonal matrix.

Specification
SUBROUTINE GOS5GAF (SIDE, INIT, M, N, A, LDA, WK, IFAIL)
INTEGER M, N, LDA, IFAIL
real A(LDA,N), WK(*)

CHARACTER*1 SIDE, INIT

Description

GOS5GAF pre- or post-multiplies an m by n matrix A by a random orthogonal matrix U,
overwriting A. The matrix A may optionally be initialized to the identity matrix before
multiplying by U, hence U is returned. U is generated using the method of Stewart [1]. The
algorithm can be summarized as follows.

Let X, X,,...,x,_, follow independent multinormal distributions with zero means and variances
Io? and dimensions n, n-1,...,2; let H; = diag(/; ,,H}), where I, is the identity matrix and H;
is the Householder transformation that reduces x; to 7 ;e,, e, being the vector with first element
one and the remaining elements zero and r; being a scalar, and let
D = diag(sign(r,, ),sign(ry, ),....sign(r,,)). Then the product U = DH H,...H, , is a random
orthogonal matrix distributed according to the Haar measure over the set of orthogonal matrices
of n. See Stewart [1], Theorem 3.3.

References

[11 STEWART, G.W.
The efficient generation of random orthogonal matrices with an application to condition
estimators.
SIAM J. Numer. Anal. 17, pp. 403-409, 1980.

Parameters
SIDE — CHARACTER*1. Input

On entry: indicates whether the matrix A is multiplied on the left or right by the random
orthogonal matrix U.

If SIDE = 'L, the matrix A is multiplied on the left, i.e. pre-multiplied.
If SIDE = 'R', the matrix A is multiplied on the right, i.e. post-multiplied.

Constraint: SIDE = 'L' or 'R'.

INIT — CHARACTER*1. Input
On entry: indicates whether or not A should be initialised to the identity matrix.

If INIT = T then A is initialised to the identity matrix.
If INIT = 'N' then A is not initialised and the matrix A must be supplied in A.

Constraint: INIT = T or 'N'.

M — INTEGER. Input
On entry: the number of rows of the matrix A, m.
Constraint: if SIDE = 'L'then M > lelse M 2 1.
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N - INTEGER. Input
On entry: the number of columns of the matrix A, ».
Constraint: if SIDE = R'then N > 1 else N 2> 1.

A(LDA,N) - real array. Input/ Output
Onentry: if INIT = 'N' then A must contain the matrix A.
On exit: the matrix UA when SIDE = 'L’ or the matrix AU when SIDE = R'.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
GOSGAEF is called.

Constraint: LDA 2 M.

WK (*) — real array. Workspace

Note: the dimension of the array WK must be at least 2*M if SIDE = L' or 2*N if SIDE =
R'.

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

On entry, M < 1,

or N < 1,

or LDA < M.
IFAIL = 2

On entry, SIDE # L' or 'R/,

or INIT # T or 'N'.
IFAIL = 3

On entry, an orthogonal matrix of dimension 1 has been requested.

Accuracy
The maximum error in U”U should be a modest multiple of machine precision.

Further Comments
GO5GBF computes a random correlation matrix from a random orthogonal matrix.

Example
A 4 by 4 orthogonal matrix is generated using the INIT = 'T' option and the result printed.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5GAF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER N, M, LDA
PARAMETER (N=4,M=4, LDA=10)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Local Scalars ..
INTEGER I, IFAIL, J
* .. Local Arrays ..
real A(LDA,N), WK(2*N)
* .. External Subroutines ..
EXTERNAL GOS5CBF, GOS5GAF
* .. Executable Statements ..

WRITE (NOUT,*) ’'GOS5GAF Example Program Results’
WRITE (NOUT, *)

CALL GOS5CBF(0)
IFAIL = 0
CALL GO5GAF(’Right’,’Initialize’,M,N,A,LDA,WK, IFAIL)

DO 20 I =1, M
WRITE (NOUT,99999) (A(I,J),J=1,N)
20 CONTINUE
STOP
*
99999 FORMAT (1X,4F9.3)
END

9.2. Program Data
None.

9.3. Program Results
GO5GAF Example Program Results

-0.461 0.823 -0.251 0.218
0.446 0.470 0.064 -0.759
-0.766 -0.204 0.256 -0.554
0.056 0.245 0.931 0.264
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GOSGBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
GOSGBF generates a random correlation matrix with given eigenvalues.
Specification
SUBROUTINE GOS5GBF (N, D, C, LDC, EPS, WK, IFAIL)
INTEGER N, LDC, IFAIL
real D(N), C(LDC,N), EPS, WK(2*N)
Description
Given n eigenvalues, 4,,4,,...,4,, such that
n
2"{7 =n
=]
and

A, 20fori=12,..n,

GO5GBF will generate a random correlation matrix, C, of dimension n, with eigenvalues
AL A sensd,.

The method used is based on that described by Lin and Bendel [1]. Let D be the diagonal matrix
with values A,,4,,...,A, and let A be a random orthogonal matrix generated by GOSGAF then the

matrix C; = ADAT is a random covariance matrix with eigenvalues A,,4,,...,A,. The matrix C,
is transformed into a correlation matrix by means of n—1 elementary rotation matrices P; such
thatC = P, P, ,..P,C,P!...P],PT . The restriction on the sum of eigenvalues implies that for
any diagonal element of C, > 1, there is another diagonal element < 1. The P, are constructed
from such pairs, chosen at random, to produce a unit diagonal element corresponding to the first
element. This is repeated until all diagonal elements are 1 to within a given tolerance €.

The randomness of C should be interpreted only to the extent that A is a random orthogonal
matrix and C is computed from A using the P; which are chosen as arbitrarily as possible.

References

[1] LIN, S.P. and BENDEL, R.B.
Algorithm AS213. Generation of Population Correlation Matrices with Specified
Eigenvalues.
Appl. Statist., 34, pp. 193-198, 1985.

Parameters

N - INTEGER. Input
On entry: the dimension of the correlation matrix to be generated, n.
Constraint: N 2 1.

D(N) - real array. Input
On entry: the n eigenvalues, A,, for i = 1,2,...,n.

Constraints: D(i) 2 0.0, for i = 1,2,...,n, and Y D(i) = n to within EPS.
=]

C(LDC,N) — real array. Output
On exit: a random correlation matrix, C, of dimension n.
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LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
GOS5GBF is called.

Constraint: LDC 2 N.

EPS - real. Input
On entry: the maximum acceptable error in the diagonal elements, €.
Constraint. EPS 2 Nx machine precision.
Suggested value: EPS = 0.00001.

WK (2*N) — real array. Workspace

IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, =1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1

On entry, N < 0,

or LDC < N,

or EPS < NX machine precision.
IFAIL = 2

On entry, D(i) < 0.0 for some i,

or Y D(i) # n to within EPS.

i=1

IFAIL = 3

The error in a diagonal element is greater than EPS. The value of EPS should be increased.
Otherwise the program could be re-run with a different value used for the seed of the
random number generator, see GOSCBF or GOSCCF.

Accuracy
The maximum error in a diagonal element is given by EPS.

Further Comments
The time taken by the routine is approximately proportional to n.

Example
A 3 by 3 correlation matrix with eigenvalues of 0.7, 0.9 and 1.4 is generated and printed.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO5GBF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=10)
* .. Local Scalars ..
real EPS
INTEGER I, IFAIL, J, LDC, N
* .. Local Arrays ..
real C(NMAX,NMAX), D(NMAX), WK(2*NMAX)
* .. External Subroutines
EXTERNAL GO5CBF, GO5GBF
* .. Executable Statements ..
WRITE (NOUT,*) ’'GOS5GBF Example Program Results’
* Skip heading in data file

READ (NIN, )
READ (NIN,*) N
IF (N.LE.NMAX) THEN
READ (NIN,*) (D(I),I=1,N)

WRITE (NOUT, *)

LDC = NMAX
CALL GOSCBF(0)
EPS = 0.0001e0

IFAIL = 0
CALL GO5GBF(N,D,C,LDC,EPS, WK, IFAIL)

DO 20I =1, N
WRITE (NOUT,99999) (C(I,J),J=1,N)
20 CONTINUE

END IF

STOP
*
99999 FORMAT (1X,3F9.3)

END

9.2. Program Data

GO5GBF Example Program Data
3
0.7 0.9 1.4

9.3. Program Results
GO5GBF Example Program Results
1.000 -0.100 -0.251

0.100 1.000 -0.239
-0.251 -0.239 1.000
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GOSHDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GOSHDF generates a realisation of a multivariate time series from a vector autoregressive
moving average (VARMA) model. The realisation may be continued or a new realisation
generated at subsequent calls to GOSHDF.

Specification
SUBROUTINE GOSHDF (MODE, K, IP, IQ, MEAN, PAR, LPAR, QQ, IK, N, W,
1 REF, LREF, IWORK, LIWORK, IFAIL)
INTEGER K, IP, IQ, LPAR, IK, N, LREF, IWORK(LIWORK), LIWORK,
1 IFAIL
real PAR(LPAR), QQ(IK,K), W(IK,N), REF(LREF)

CHARACTER*1 MODE, MEAN

Description

Let the vector W, = (w,,,W,,,...W,,) T, denote a k dimensional time series which is assumed to
follow a vector autoregressive moving average (VARMA) model of the form:

Wit =0 (Wei—t) + 0:(Wo-p) + . + ¢, (W) +
8‘ - 618'_1 - 928'_2 T oeee T oqet__q (1)

where £, = (£,,,€,,...€,) ", is a vector of k residual series assumed to be Normally distributed
with zero mean and positive-definite covariance matrix X. The components of €, are assumed to
be uncorrelated at non-simultaneous lags. The ¢,’s and 6,’s are k by k matrices of parameters.
{¢;}, for i = 1,2,...,p, are called the autoregressive (AR) parameter matrices, and {6;}, for
Jj = 1,2,...q, the moving average (MA) parameter matrices. The parameters in the model are
thus the p k by k ¢-matrices, the g k by k @-matrices, the mean vector u and the residual error
covariance matrix XZ. Let

(¢, 1 0. .. 0] [0, 1 0. .. 0]

¢, 01 0. .0 6, 010. .0
A(9) = |. . and B(0) =

$.0. . .01 6,,0...0I

6, 0. . .00, . 6, 0...00],.

where I denotes the k by & identity matrix.

The model (1) must be both stationary and invertible. The model is said to be stationary if the
eigenvalues of A(¢) lie inside the unit circle and invertible if the eigenvalues of B(6) lie inside
the unit circle.

For k 2 6 the VARMA model (1) is recast into state space form and a realisation of the state
vector at time zero computed. For all other cases the routine computes a realisation of the
pre-observed vectors Wo,W_,,...W _,, &.€_y,....€,_,, from equation (1), see Shea [2]. This
realisation is then used to generate a sequence of successive time series observations. Note that
special action is taken for pure MA models, that is for p = 0.

At the user’s request a new realisation of the time series may be generated with less computation
using only the information saved in a reference vector from a previous call to GOSHDF. See the
description of the parameter MODE in Section 5 for details.
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The routine returns a realisation of W,,W,,...,W,. On a successful exit, the recent history is
updated and saved in the array REF so that GOSHDF may be called again to generate a
realisation of W,,,,W,,,,...etc. See the description of the parameter MODE in Section 5 for
details.

Further computational details are given in [2]. Note however that this routine uses a spectral
decomposition rather than a Cholesky factorisation to generate the multivariate Normals.
Although this method involves more multiplications than the Cholesky factorisation method and
is thus slightly slower it is more stable when faced with ill-conditioned covariance matrices. A
method of assigning the AR and MA coefficient matrices so that the stationarity and invertibility
conditions are satisfied is described in Barone [1].

4. References

[1] BARONE, P.
A Method for Generating Independent Realisations of a Multivariate Normal Stationary and
Invertible ARMA (p,q) Process.
J. Time Series Anal., 8, pp. 125-130, 1987.

[2] SHEA, B.L.
A Note on the Generation of Independent Realisations of a Vector Autoregressive Moving

Average Process.
J. Time Series Anal., 9, pp. 403-410, 1988.

5. Parameters
MODE - CHARACTER¥*1. Input
On entry: must be set as follows;

MODE = 'S' (Start), the routine is being called for the first time; a realisation of the recent
history is computed, and the sequence of time series values from the VARMA model is then
generated.

MODE = R' (Restart), the routine must have been called before with the same VARMA
model; a new realisation of the recent history is computed using information stored in the
reference vector, followed by the sequence of time series values.

MODE = 'C' (Continue), the routine must have been called before with the same VARMA
model; a new sequence is generated, from the point at which the last sequence ended, using
a realisation of the recent history which was updated and stored by the previous call to the
routine.

If MODE = R' or 'C', then the user must ensure that the reference vector REF and the
values of K, IP, IQ, MEAN, PAR, QQ and IK have not been changed between calls to
GO5HDF.

Constraint: MODE = 'S', 'R, or 'C'.

2: K - INTEGER. Input
On entry: the dimension k, of the multivariate time series.
Constraint: K 2 1.

3:  IP - INTEGER. Input
On entry: the number of AR parameter matrices, p.
Constraint: IP 2 0.

4:  1IQ — INTEGER. Input
On entry: the number of MA parameter matrices, q.
Constraint. 1Q 2 0.
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5:

6:

10:

11:

12:

MEAN - CHARACTER*1. Input

On entry: indicates whether or not all elements of u are to be supplied by the user or to be
taken as zero.

If MEAN = 'M the values of u, are supplied in the array PAR.
If MEAN = 'Z', all elements of u are to be taken as zero.

Constraint: MEAN = ™' or 'Z'.

PAR(LPAR) — real array. Input
On entry: the parameter values read in row by row in the order ¢,,8,,....9,, 6,,6,,...6,, 4.

Thus, if IP > 0, then PAR((/-1)Xxkxk+(i—1)xk+j) must be set equal to the (i,j)th
element of ¢,, forl = 1,2,...p; i,j = 1,2,k

If IQ > 0, then PAR(pxkxk+(I-1)xkxk+(i—1)xk+j) must be set equal to the (i,j)th
element of 6,, for I = 12,...q; i,j = 1,2,....k.

If MEAN = 'M', then PAR((p+q)xkxk+i) must be set equal to the ith component of the
mean vector y, for i = 1,2,....k.

Constraint: the first IPXKXK elements of PAR must satisfy the stationarity condition and
the next IQXKxK elements of PAR must satisfy the invertibility condition.

LPAR - INTEGER. Input

On entry. the dimension of the array PAR as declared in the (sub)program from which
GOSHDF is called.

Constraints: LPAR 2 max(1,npar) where
npar = (IP+IQ)xKxK if MEAN = 'Z' and
npar = (IP+IQ)xKxK + K if MEAN = ‘M.

QQ(IK\K) — real array. Input

On entry: QQ(i,j) must contain the (i,j)th element of Z. Only the lower triangle is required.
Constraint: the elements of QQ must be such that X is positive-definite.

IK — INTEGER. Input

On entry: the first dimension of the arrays QQ and W as declared in the (sub)program from
which GOSHDF is called.

Constraint: IK 2 K.

N - INTEGER. Input
On entry: the number of observations to be generated, n.
Constraint: N 2 1.

W(IK,N) — real array. Output
Onexit: W(i,t) will contain a realisation of the ith component of W,, for i = 1,2,...,k
t=1.2,...,n.

REF(LREF) — real array. Input/ Output

Onentry: if MODE = 'R’ or 'C', then the array REF as output from the previous call to
GOSHDF must be input without any change to the first m + (k+1) (k+2) + (m+1)(m+2)
elements where m = kxmax(p,q) if k 2 6 and k(p+q) if k < 6.

If MODE = 'S', then the contents of REF need not be set.

Onexit: the first m + (k+1)(k+2) + (m+1)(m+2) elements of the array REF contain
information required for any subsequent calls to the routine with MODE = 'R’ or 'C'; the
rest of the array is used as workspace. See Section 8.
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13: LREF - INTEGER. Input

On entry: the dimension of the array REF as declared in the (sub)program from which
GOSHDF is called.

Constraint:.
Let r
and /

max(IP,IQ)
K(K+1)/2 if IP = 0,
K(K+1)/2 + (IP-1)K? ifIP 2 1,

IfK 2 6, then LREF > (5r24+1)K2+(4r+3)K+4

IfK < 6, then LREF 2 ((IP+IQ)%+1)K*+(4(IP+IQ)+3)K +
max {Kr(Kr+2), K2(IP+IQ) 2 +/(I+3)+K2 (IQ+1)} + 4.

See Section 8 for some examples of the required size of the array REF.

14: IWORK(LIWORK) — INTEGER array. Workspace

15: LIWORK - INTEGER. Input
On entry: the dimension of the array IWORK as declared in the (sub)program from which
GOSHDF is called.

Constraint: LIWORK 2 Kxmax (IP,IQ).

16: IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, MODE # 'S', R' or 'C',
or K <1,
or IP < 0,
or IQ <0,
or MEAN # 'M, or 'Z',
or LPAR < max((IP+IQ)xKxK+K,1) and MEAN = 'M,
or LPAR < max((IP+IQ)xKxK,1) and MEAN = 'Z',
or IK < K,
or N <1,
or LREF is too small,
or LIWORK is too small.
IFAIL = 2

On entry, either the value of Z'is not positive-definite, or the AR parameters are such that
the model is non-stationary, or the MA parameters are such that the model is non-invertible.
To proceed, the user must try different parameter values.

IFAIL = 3

This is an unlikely exit brought about by an excessive number of iterations being needed by
the NAG Fortran Library routine used to evaluate the eigenvalues of A(¢) or B(6). If this
error occurs please contact NAG.
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IFAIL = 4
GOSHDF has not been able to calculate all the required elements of the array REF. This is
an unlikely exit brought about by an excessive number of iterations being needed by
FO2ABEF (o evaluate eigenvalues to be stored in the array REF. If this error occurs please
contact NAG.

IFAIL = 5

GOSHDF has not been able to calculate all the required elements of the array REF. This is
likely to be because the AR parameters are very close to the boundary of the stationarity
region.

IFAIL = 6

The reference vector REF has been corrupted, when MODE is set to 'R’ or 'C'. To proceed,
the user should set MODE to 'S".

7. Accuracy

The accuracy is limited by the matrix computations performed, and this is dependent on the
condition of the parameter and covariance matrices.

8. Further Comments

Note that, in reference to IFAIL = 2, GOSHDF will permit MA parameters on the boundary of
the invertibility region.

The elements of REF contain amongst other information details of the spectral decompositions
which are used to generate future multivariate Normals. Note that these eigenvectors may not be
unique on different machines. For example the eigenvectors corresponding to multiple
eigenvalues may be permuted. Although an effort is made to ensure that the eigenvectors have
the same sign on all machines, differences in the signs may theoretically still occur.

The following table gives some examples of the required size of the array REF, specified by the
parameter LREF, for k = 1,2,3, and for various values of p and q.

q

0 1 2 3
13 20 31 46
0 36 56 92 144
85 124 199 310
19 30 45 64
1 52 88 140 208
115 190 301 448

p

35 50 69 92
2 136 188 256 340
397 508 655 838
57 76 99 126
3 268 336 420 520

877 1024 1207 1426

Note that the routine G13DXF may be used to check whether a VARMA model is stationary and
invertible.

The time taken depends on the values of p, g and especially n and k.

[NP2136/15] Page



GO5SHDF

9.

9.1.

Page 6

GOS5 — Random Number Generators

Example
This program generates two realisations, each of length 48, from the bivariate AR(1) model

W, —u= o (W_,—p) + ¢

with

9, = [0.00 0.58

0.80 0.07J _ {5.00

297
= 9'00}, and X = [ }

0.64 538

In the first call MODE is set to 'S’ in order to set up the reference vector before generating the
first realisation. In the subsequent call MODE is set to 'R' and a new recent history is generated
and used to generate the second realisation.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

20

40

+

+
+

+

GOSHDF Example Program Text
Mark 15 Release. NAG Copyright 1991.

.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER KMAX, IK, IPMAX, IQMAX, LPARMX, NMAX, LREF,
LIWORK

PARAMETER (KMAX=3, IK=KMAX, IPMAX=2 , IQMAX=2,
LPARMX=( IPMAX+IQMAX) *KMAX*KMAX+KMAX, NMAX=100,
LREF=554, LIWORK=10)

.. Local Scalars ..

INTEGER I, IFAIL, IP, IQ, J, K, N, NPAR

CHARACTER MEAN

.. Local Arrays ..

real PAR(LPARMX), QQ(IK,KMAX), REF(LREF), W(IK,NMAX)

INTEGER IWORK(LIWORK)

.. External Subroutines ..

EXTERNAL GO5CBF, GOS5HDF

.. Executable Statements ..

WRITE (NOUT,*) ‘GO5HDF Example Program Results’
Skip heading in data file

READ (NIN, *)

READ (NIN,*) K, IP, IQ, N, MEAN

IF (K.GT.0 .AND. K.LE.KMAX .AND. IP.GE.0 .AND. IP.LE.IPMAX .AND.
IQ.GE.0 .AND. IQ.LE.IQMAX) THEN
NPAR = (IP+IQ)*K*K
IF (MEAN.EQ.’M’ .OR. MEAN.EQ.’m’) NPAR = NPAR + K
IF (N.GT.0 .AND. N.LE.NMAX) THEN
READ (NIN,*) (PAR(I),I=1,NPAR)
DO 20 I =1, K
READ (NIN,*) (QQ(I,J),J=1,1I)
CONTINUE

CALL GOS5CBF(0)
IFAIL = 0

CALL GOS5HDF(’Start’,K,IP,IQ,MEAN,PAR,NPAR, QQ, IK,N, W, REF,
LREF, IWORK, LIWORK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Realisation Number 1’

DO 40 I =1, K
WRITE (NOUT,99999) ’ Series number 7, I
WRITE (NOUT,*) / ———————— e ’
WRITE (NOUT, *)
WRITE (NOUT,99998) (W(I,J),J=1,N)
CONTINUE
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IFAIL = 0
*
CALL GOSHDF(’Restart',K,IP,IQ,MEAN,PAR,NPAR,QQ,IK,N,W,REF,
+ LREF,IWORK,LIWORK,IFAIL)
*
WRITE (NOUT,*)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Realisation Number 2’
*
DO 60 I = 1, K
WRITE (NOUT,99999) ’ Series number ', I
WRITE (NOUT,*) ' ’
WRITE (NOUT, *)
WRITE (NOUT,99998) (W(I,J),J=1,N)
60 CONTINUE
*
END IF
END IF
STOP

*

99999 FORMAT (/1X,A,I3)
99998 FORMAT (8(2X,F8.3))

END

9.2. Program Data
GOSHDF Example Program Data

210 48 "M/ : K, IP, IQ,
0.80 0.07 0.00 0.58 5.00 9.00 : PAR
2.97 : QQ
0.64 5.38
9.3. Program Results
GO5HDF Example Program Results
Realisation Number 1
Series number 1
4.722 6.101 3.707 2.501 2.757
5.197 3.596 4.752 4.441 4,733
4.847 1.414 0.548 1.212 0.203
-0.948 -0.311 5.809 2.649 6.345
-0.972 ~-1.839 -2.293 -1.304 -2.571
-2.155 -0.375 1.737 3.194 2.236
Series number 2
1.434 -0.767 0.403 -3.162 1.674
-0.681 -3.079 -0.786 4.618 3.477
3.902 -0.017 -3.620 -1.489 -4.478
-1.325 -5.113 -1.932 -1.989 -2.075
-4.857 -0.731 1.350 -2.720 -0.110
0.387 2.266 2.049 0.214 0.638
Realisation Number 2
Series number 1
1.289 2.151 0.168 2.621 3.190
-2.296 -4.731 -4.6717 -2.975 -0.964
-3.127 -1.230 -2.990 -5.861 -3.854
-5.010 -6.696 -6.756 -5.418 -5.828
-2.006 -1.415 -2.847 -3.532 -3.479
0.962 2.168 2.168 3.531 2.702
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N, MEAN

7.143
4.970
-1.066
3.522
-0.447
3.504

1.241
2.454
-5.614
-3.710
-0.161
-0.026

0.488
0.694
-6.995
-4.878
-0.209
1.524

4.752
5.585
-1.992
3.982
2.301
4.163

0.596
4.775
-5.265
-3.205
1.944
-0.822

1.254
-1.225
-5.921
-4.853

0.034
-2.152

5.624
4.820
-1.765
2.394
-1.910
5.562

-2.187
0.451
0.275

-5.205
2.219
1.735

-0.500
-0.809
-4.316
-4.411
0.565
0.718
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Series number 2

-0.521
-3.834
2.775
-3.899
0.818
1.859

-2.962
-1.155
0.979
-5.066
1.957
~-6.834

-3.000
-4.113
-0.732
-2.451
-2.845
-3.248

-0.633
-3.726
-0.063
-0.843

2.020
-1.032

-2.936
-0.830
1.502
-1.178
0.847
-1.977

GOS5 — Random Number Generators

-5.076
-0.403
-3.152
-4.910
-2.144
-1.491

~2.939
-4.221
-6.403
-5.041
-1.480
-0.719

-1.469
-3.672
-5.306
-1.291
-1.286
-0.196

Page 8 (last)
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Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

GOTAAF 15 Computes confidence interval for the parameter of a binomial
distribution

GO7ABF 15 Computes confidence interval for the parameter of a Poisson distribution

GO7BBF 15 Computes maximum likelihood estimates for parameters of the Normal
distribution from grouped and/or censored data

GO7BEF 15 Computes maximum likelihood estimates for parameters of the Weibull
distribution

GO7CAF 15 Computes t-test statistic for a difference in means between two Normal
populations, confidence interval

GO7DAF 13 Robust estimation, median, median absolute deviation, robust standard
deviation

GO7DBF 13 Robust estimation, M-estimates for location and scale parameters,
standard weight functions

GO7DCF 13 Robust estimation, M-estimates for location and scale parameters, user-
defined weight functions

GO7DDF 14 Computes a trimmed and winsorized mean of a single sample with
estimates of their variance

GO7EAF 16 Robust confidence intervals, 1 sample

GOTEBF 16 Robust confidence intervals, 2 sample
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1 Scope of the Chapter

This chapter deals with the estimation of unknown parameters of a univariate distribution. It includes
both point and interval estimation using maximum likelihood and robust methods.

2 Background to the Problems

Statistical inference is concerned with the making of inferences about a population using the observed
part of the population called a sample. The population can usually be described using a probability
model which will be written in terms of some unknown parameters. For example, the hours of relief
given by a drug may be assumed to follow a Normal distribution with mean p and variance o?; it is then
required to make inferences about the parameters, 4 and o2, on the basis of an observed sample of relief

times.

There are two main aspects of statistical inference: the estimation of the parameters and the testing of
hypotheses about the parameters. In the example above, the values of the parameter o? may be estimated
and the hypothesis that g > 3 tested. This chapter is mainly concerned with estimation but the test of
a hypothesis about a parameter is often closely linked to its estimation. Tests of hypotheses which are
not linked closely to estimation are given in the chapter on non-parametric statistics (Chapter G08).

There are two types of estimation to be considered in this chapter: point estimation and interval
estimation. Point estimation is when a single value is obtained as the best estimate of the parameter.
However, as this estimate will be based on only one of a large number of possible samples, it can be seen
that if a different sample were taken, a different estimate would be obtained. The distribution of the
estimate across all the possible samples is known as the sampling distribution. The sampling distribution
contains information on the performance of the estimator, and enables estimators to be compared. For
example, a good estimator would have a sampling distribution with mean equal to the true value of the
parameter; that is, it should be an unbiased estimator; also the variance of the sampling distribution
should be as small as possible. When considering a parameter estimate it is important to consider its
variability as measured by its variance, or more often the square root of the variance, the standard error.

The sampling distribution can be used to find interval estimates or confidence intervals for the parameter.
A confidence interval is an interval calculated from the sample so that its distribution, as given by the
sampling distribution, is such that it contains the true value of the parameter with a certain probability.

Estimates will be functions of the observed sample and these functions are known as estimators. It is
usually more convenient for the estimator to be based on statistics from the sample rather than all the
individuals observations. If these statistics contain all the relevant information then they are known
as sufficient statistics. There are several ways of obtaining the estimators; these include least-squares,
the method of moments, and maximum likelihood. Least-squares estimation requires no knowledge of
the distributional form of the error apart from its mean and variance matrix, whereas the method of
maximum likelihood is mainly applicable to situations in which the true distribution is known apart from
the values of a finite number of unknown parameters. Note that under the assumption of Normality, the
least-squares estimation is equivalent to the maximum likelihood estimation. Least squares is often used
in regression analysis as described in Chapter G02, and maximum likelihood is described below.

Estimators derived from least-squares or maximum likelihood will often be greatly affected by the presence
of extreme or unusual observations. Estimators that are designed to be less affected are known as robust
estimators.

2.1 Maximum Likelihood Estimation

Let X; be a univariate random variable with probability density function

fx.(‘”i;e):

where 6 is a vector of length p consisting of the unknown parameters. For example, a Normal distribution
with mean 6, and standard deviation 6, has probability density function

1 __1_(::,-—91)2
Vare, P\ "2\ 7%, |
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The likelihood for a sample of n independent observations is

Like = f[ fX, (I,'; 0) ,

i=1

where z; is the observed value of X;. If each X; has an identical distribution, this reduces to

Like = [T fx (z::6), (1)

i=1
and the log-likelihood is
log (Like) = L = > _ log(fx (z;;9))- (2)

i=1

The maximum likelihood estimates (6) of § are the values of § that maximize (1) and (2). If the range of
X is independent of the parameters, then 8 can usually be found as the solution to

n

0 - oL
—1 ’0 —_—T'—_O, ‘_—1,2,..., . 3
E % og(fx(z;;0)) 0. J p ()

i=1 2 J
Note that 8%’;—_ is known as the efficient score.
Maximum likelihood estimators possess several important properties.

(a) Maximum likelihood estimators are functions of the sufficient statistics.

(b) Maximum likelihood estimators are (under certain conditions) consistent. That is, the estimator
converges in probability to the true value as the sample size increases. Note that for small samples
the maximum likelihood estimator may be biased.

(¢) For maximum likelihood estimators found as a solution to (3), subject to certain conditions, it

follows that oL
E <567> =0, (4)

I(6) = —-E (?TI;) =E ((2—5)2) , (5)

and then that 6 is asymptotically Normal with mean vector 6, and variance-covariance matrix I, 1

where 6, denotes the true value of 6. The matrix I, is known as the information matrix and Iy, is
known as the Cramer—Rao lower bound for the variance of an estimator of 4.

and

For example, if we consider a sample, z,,z,,...,z,, of size n drawn from a Normal distribution with
unknown mean p and unknown variance o, then we have

L = log(Like(s, 0% 2)) = — 7 log(2r) — = log(0?) = > (z; — u)*/20”

i=1

and thus

n

= (e -

i=1

and

OL _ n = 216 4
m——w"';(zi_u) /2‘7 .

Then equating these two equations to zero and solving gives the maximum likelihood estimates

p=z
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and

62 = ;(r, —z)?/n.

These maximum likelihood estimates are asymptotically Normal with mean vector a, where

aT = (IJY 02)’

and covariance matrix C. To obtain C we find the second derivatives of L with respect to x and ¢? as
follows:

FL__n
op? o2
6L n =
k= e -
i=1
9L 9L _ n(Z-—p
Oudo? ~ 8o20u ot
Then 62_L 9L
-1 op?  8a28p | _ [ n/o? 0
CT=El 2 e [T 0 a2t
Opdo?  9(0?)?
so that

¢= ( 620/n 20’9/11 > '

To obtain an estimate of C' the matrix may be evaluated at the maximum likelihood estimates.

It may not always be possible to find maximum likelihood estimates in a convenient closed form, and in
these cases iterative numerical methods, such as the Newton-Raphson procedure or the EM algorithm
(expectation maximisation), will be neccessary to compute the maximum likelihood estimates. Their
asymptotic variances and covariances may then be found by substituting the estimates into the second
derivatives. Note that it may be difficult to find the expected value of the second derivatives required for
the variance-covariance matrix and in these cases the observed value of the second derivatives is often
used.

The use of maximum likelihood estimation allows the construction of generalized likelihood ratio tests. If
A = 2(l; —1,) where I, is the maximised log-likelihood function for a model 1 and I, is the maximised log-
likelihood function for a model 2, then under the hypothesis that model 2 is correct, 2 is asymptotically
distributed as a x? variable with p — ¢ degrees of freedom. Consider two models in which model 1 has p
parameters and model 2 is a sub-model (nested model) of model 1 with ¢ < p paramters, that is model 1
has an extra p — ¢ parameters. This result provides a useful method for performing hypothesis tests on
the parameters. Alternatively, tests exist based on the asymptotic Normality of the estimator and the
efficient score; see Cox and Hinkley [1], page 315.

2.2 Confidence Intervals

Suppose we can find a function, ¢(z, 6), whose distribution depends upon the sample = but not on the
unknown parameter 6, and which is a monotonic (say decreasing) function in 6 for each z, then we can
find ¢, such that P(t, < t(z,6)) = 1 — o no matter what 6 happens to be. The function #(z, §) is known
as a pivotal quantity. Since the function is monotonic the statement that ¢; < t(z,6) may be rewritten
as § > 0,(x), see Figure 1. The statistic 6,(z) will vary from sample to sample and if we assert that
6 > 6,(z) for any sample values which arise, we will be right in a proportion 1 — a of the cases, in the
long run or on average. We call 6,(z) a 1 — a upper confidence limit for 6.

We have considered only an upper confidence limit. The above idea may be generalised to a two-sided
confidence interval where two quantities, t, and t,, are found such that for all 6, P(t, < t(z,0) < t¢,) =
1 — a. This interval may be rewritten as f,(z) < 6 < 8,(z). Thus if we assert that @ lies in the interval
[65(z),6,(z)] we will be right on average in 1 — a proportion of the times under repeated sampling.

Hypothesis (significance) tests on the parameters may be used to find these confidence limits. For example,
if we observe a value, k, from a binomial distribution, with known parameter n and unknown parameter

G07.4 [NP3086/18]



GO07 - Univariate Estimation Introduction - G07

o) 8/

Figure 1

p, then to find the lower confidence limit we find p; such that the probability that the null hypothesis
H,: p = p, (against the one sided alternative that p > p;) will be rejected, is less than or equal to a/2.
Thus for a binomial random variable, B, with parameters n and p, we require that P(B > k) < a/2.
The upper confidence limit, p,,, can be constructed in a similar way.

For large samples the asymptotic Normality of the maximum likelihood estimates discussed above is used
to construct confidence intervals for the unknown parameters.

2.3 Robust Estimation

For particular cases the probability density function can be written as

oy L z; — 0,
fx.-(zi»g)-g;g( 5, ),

for a suitable function g; then 6, is known as a location parameter and 6,, usually written as o, is known
as a scale parameter. This is true of the Normal distribution.

If 6, is a location parameter, as described above, then equation (3) becomes

id)(ti;él)zox (6)

i=1

where ¥(z) = — £ log(g(2))-

For the scale parameter o (or ¢?) the equation is

ZX (z;;%) =n/2, (7N
i=1

where x(z) = 2¢(2)/2.

For the Normal distribution %(z) = z and x(z) = z%/2. Thus, the maximum likelihood estimates for 6,
and o? are the sample mean and variance with the n divisor respectively. As the latter is biased, (7) can
be replaced by

> (;") = (n=1)8, ®)
i=1

1
3

where f is a suitable constant, which for the Normal x function is

The influence of an observation on the estimates depends on the form of the % and x functions. For
a discussion of influence, see Hampel et al. [2] and Huber [3]. The influence of extreme values can be
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reduced by bounding the values of the ¥- and x-functions. One suggestion due to Huber [3] is

-C, z<-C
¥(z) = z, |]<C
C, =z>C.
v(z)
-C C 'z
Figure 2

Redescending i-functions are often considered; these give zero values to 1(z) for large positive or negative
values of z. Hampel [2] suggested

—9(-2)

z, 0<z<h

Y(z) = hy, hy <z< hy
hi(hg—2)/(hg—hy), h, <z<hg
0, 2> hj.

V()

-hs  -h, -k z

h h, hs

Figure 3

Usually a x-function based on Huber’s y-function is used: x = %2/2. Estimators based on such bounded
y-functions are known as M-estimators, and provide one type of robust estimator.

Other robust estimators for the location parameter are:

(i) the sample median,
(ii) the trimmed mean, i.e., the mean calculated after the extreme values have been removed from the
sample,
(iii) the winsorized mean, i.e., the mean calculated after the extreme values of the sample have been
replaced by other more moderate values from the sample.

For the scale parameter, alternative estimators are:

(i) the median absolute deviation scaled to produce an estimator which is unbiased in the case of data
coming from a Normal distribution,

(ii) the winsorized variance, i.e., the variance calculated after the extreme values of the sample have
been replaced by other more moderate values from the sample.

For a general discussion of robust estimation, see Hampel et al. [2] and Huber [3].
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2.4 Robust Confidence Intervals

In Section 2.2 it was shown how tests of hypotheses can be used to find confidence intervals. That
approach uses a parametric test that requires the assumption that the data used in the computation of
the confidence has a known distribution. As an alternative, a more robust confidence interval can be
found by replacing the parametric test by a non-parametric test. In the case of the confidence interval for
the location parameter, a Wilcoxon test statistic can be used, and for the difference in location, computed
from two samples, a Mann—Whitney test statistic can be used.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

Maximum likelihood estimation and confidence intervals.

GO7TAAF provides a confidence interval for the parameter p of the binomial distribution.
GO7ABF provides a confidence interval for the mean parameter of the Poisson distribution.

GO7BBF  provides maximum likelihood estimates and their standard errors for the parameters of the
Normal distribution from grouped and/or censored data.

GOTBEF  provides maximum likelihood estimates and their standard errors for the parameters of the
Weibull distribution from data which may be right-censored.

GO7CAF provides a t-test statistic to test for a difference in means between two Normal populations,
together with a confidence interval for the difference between the means.

Robust estimation.

GO7DBF provides M-estimates for location and, optionally, scale using four common forms of the
1-function.

GO7DCF produces the M-estimates for location and, optionally, scale but for user-supplied - and
x-functions.

GO7DAF provides the sample median, median absolute deviation, and the scaled value of the median
absolute deviation.

GO7DDF provides the trimmed mean and winsorized mean together with estimates of their variance
based on a winsorized variance.

Robust Internal Estimation.

GO7EAF produces a rank based confidence interval for locations.

GO7TEBF produces a rank based confidence interval for the difference in location between two
populations.

4 References

[1] Cox D R and Hinkley D V (1974) Theoretical Statistics Chapman and Hall

[2] Hampel F R, Ronchetti E M, Rousseeuw P J and Stahel W A (1986) Robust Statistics. The
Approach Based on Influence Functions Wiley

[3] Huber P J (1981) Robust Statistics Wiley

[4] Kendall M G and Stuart A (1973) The Advanced Theory of Statistics (Volume 2) Griffin (3rd
Edition)

[5] Silvey S D (1975) Statistical Inference Chapman and Hall
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GO7AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GO7AAF computes a confidence interval for the parameter p (the probability of a success) of a
binomial distribution.

Specification
SUBROUTINE GO7AAF (N, K, CLEVEL, PL, PU, IFAIL)
INTEGER N, K, IFAIL
real CLEVEL, PL, PU

Description

Given the number of trials, n, and the number of successes, k, this routine computes a
100(1-)% confidence interval for p, the probability parameter of a binomial distribution with
probability function,

fx) = (Z)p"(l—p)”" forx = 0,1,...,n,
where « is in the interval (0,1).
Let the confidence interval be denoted by [p,.p,].
The point estimate for p is p = k/n.
The lower and upper confidence limits p, and p, are estimated by the solutions to the equations;

5 (Dt a1-p™ = a2,
L (n

Three different methods are used depending on the number of trials, n, and the number of
successes, k.
(1) ¥ max(k,n—k) < 10°.

The relationship between the beta and binomial distributions (see Hastings and Peacock [1],
page 38) is used to derive the equivalent equations,

p, = ﬁk,n—k+l,a/2 ’

P. = Briinti-an
where f,,s is the deviate associated with the lower tail probability, 8, of the beta
distribution with parameters a and b. These beta deviates are computed using GO1FEF.

(2) If max(kn—k) 2 10° and min(k,n—-k) < 1000.
The binomial variate with parameters n and p is approximated by a Poisson variate with
mean np, see [1], page 38.
The relationship between the Poisson and x? distributions (see [1], page 112) is used to
derive the following equations;
- 1.2
P = 5 Xokers

1,
P, = Q;Zzuz,l—a/z’

where y 2, is the deviate associated with the lower tail probability, 8, of the x? distribution
with v degrees of freedom.
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In turn the relationship between the x? distribution and the gamma distribution (see (1],
page 70) yields the following equivalent equations;

1
p; = n Vi2;0025

1
P. = 2n Vir12:1-a02>

where y, g5 is the deviate associated with the lower tail probability, &, of the gamma
distribution with shape parameter o and scale parameter f. These deviates are computed
using GO1FFF.

(3) If max(kn—k) > 10° and min(k,n—k) > 1000.
The binomial variate with parameters » and p is approximated by a Normal variate with
mean np and variance np(1-p), see [1], page 38.
The approximate lower and upper confidence limits p, and p, are the solutions to the
equations;
k — np,
——— -— z - »
vnp,(1-p;) f-ar2
k - np,
Ty - fa2e
vrp, (1-p,)

where z 5 is the deviate associated with the lower tail probability, &, of the standard Normal
distribution. These equations are solved using C02AJF.

4. References

[1] HASTINGS, N.A.J. and PEACOCK, J.B.
Statistical Distributions.
Butterworth, 1975.

[2] SNEDECOR, G.W. and COCHRAN, W.G.
Statistical Methods.
Iowa State University Press, 1967.

S. Parameters

1: N - INTEGER. Input
On entry: the number of trials, ».
Constraint: N 2 1,

2: K - INTEGER. Input
On entry: the number of successes, k.
Constraint: 0 < K < N,

3:  CLEVEL - real. Input

Onentry: the confidence level, (1-c), for two-sided interval estimate. For example
CLEVEL = 0.95 will give a 95% confidence interval.

Constraint: 0.0 < CLEVEL < 1.0.

4. PL —real. Output
On exit: the lower limit, p,, of the confidence interval.

5:  PU - real. Output
On exit: the upper limit, p,, of the confidence interval.
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6:

9.1.

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, N < 1,
or K <0,
or N < K,
or CLEVEL < 0.0,
or CLEVEL 2 1.0.
IFAIL = 2

When using the relationship with the gamma distribution to calculate one of the confidence
limits, the series to calculate the gamma probabilities has failed to converge. Both PL and
PU are set to zero. This is a very unlikely error exit and if it occurs please contact NAG.

Accuracy

For most cases using the beta deviates the results should have a relative accuracy of
max(0.5E—-12, 50.0x€) where € is the machine precision (see X02AJF). Thus on machines
with sufficiently high precision the results should be accurate to 12 significant figures. Some
accuracy may be lost when /2 or 1-o/2 is very close to 0.0, which will occur if CLEVEL is
very close to 1.0. This should not affect the usual confidence levels used.

The approximations used when n is large are accurate to at least 3 significant digits but usually
to more.

Further Comments
None.

Example

The following example program reads in the number of deaths recorded among male recipients
of war pensions in a six year period following an initial questionnaire in 1956. We consider two
classes, non-smokers and those who reported that they smoked pipes only. The total number of
males in each class is also read in. The data is taken from Snedecor and Cochran [2], page 216.
An estimate of the probability of a death in the six year period in each class is computed together
with 95% confidence intervals for these estimates.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7AAF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real CLEVEL, PHAT, PL, PU
INTEGER IFAIL, K, N
* .. External Subroutines ..
EXTERNAL GO7AAF
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* .. Intrinsic Functions ..

INTRINSIC real
* .. Executable Statements ..

WRITE (NOUT,*) ’'GO7AAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Probability Confidence Interval ’
WRITE (NOUT, *)

20 READ (NIN, *,END=40) N, K, CLEVEL
PHAT = real(K) /real(N)
IFAIL = 0

CALL GO7AAF(N,K,CLEVEL,PL,PU, IFAIL)

WRITE (NOUT,99999) PHAT, ‘( ', PL, ' , ', PU, 7 )’
GO TO 20
40 STOP

*
99999 FORMAT (1X,F10.4,6X,A,F6.4,A,F6.4,R)
END

9.2. Program Data

GO7AAF Example Program Data
1067 117 0.95 : N, K, CLEVEL
402 54 0.95

9.3. Program Results
GO7AAF Example Program Results

Probability Confidence Interval
0.1097 ( 0.0915 , 0.1300 )
0.1343 ( 0.1025 , 0.1716 )
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GO7ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised tcrms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
GO7ABF computes a confidence interval for the mean parameter of the Poisson distribution.
Specification
SUBROUTINE GO7ABF (N, XMEAN, CLEVEL, TL, TU, IFAIL)
INTEGER N, IFAIL
real XMEAN, CLEVEL, TL, TU
Description

Given a random sample of size n, denoted by x,,x,,...,.x,, from a Poisson distribution with
probability function

p(x) = e'o%—, forx = 0,1,2,...

the point estimate, 6, for @ is the sample mean, .

Given n and ¥ this routine computes a 100(1-a)% confidence interval for the parameter 6,
denoted by [6,,6,], where « is in the interval (0,1).

The lower and upper confidence limits are estimated by the solutions to the equations

_nal hnd (nel)x = g
¢ ,,zq x! 2’
) (6.)" _ a

= x 2’

where T = Y x; = nf.
i=1
The relationship between the Poisson distribution and the x* distribution (see Hastings and
Peacock [1], page 112) is used to derive the equations
1
6, = % s

1
6, = Z;Zzznz.l-a/z’
where x2, is the deviate associated with the lower tail probability p of the y* distribution with
v degrees of freedom.
In turn the relationship between the y? distribution and the gamma distribution (see [1], page
70) yields the following equivalent equations;
1
6, = EYT,z;a/z’

6, = ly
u 2n T+1,2;,1-0/2°

where 7,55 is the deviate associated with the lower tail probability, &, of the gamma distribution
with shape parameter o and scale parameter . These deviates are computed using GO1FFF.
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4. References

[1] HASTINGS, N.A.J. and PEACOCK, J].B.
Statistical Distributions.
Butterworth, 1975.

[2] SNEDECOR, G.W. and COCHRAN, W.G.
Statistical Methods.
Iowa State University Press, 1967.

S. Parameters

1: N - INTEGER. Input
On entry: the sample size, n.
Constraint: N 2 1.

2:  XMEAN - real. Input
On entry: the sample mean, X.
Constraint: XMEAN 2 0.0.

3:  CLEVEL - real. Input

Onentry. the confidence level, (1-a), for two-sided interval estimate. For example
CLEVEL = 0.95 gives a 95% confidence interval.

Constraint: 0.0 < CLEVEL < 1.0.

4:  TL — real. Output
On exit: the lower limit, 8,, of the confidence interval.

5:  TU - real. Output
On exit: the upper limit, ,, of the confidence interval.

6: IFAIL — INTEGER. Input/ Output

Onentry. TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1,
or XMEAN < 0.0,
or CLEVEL < 0.0,
or CLEVEL 2 1.0.
IFAIL = 2

When using the relationship with the gamma distribution to calculate one of the confidence
limits, the series to calculate the gamma probabilities has failed to converge. Both TL and
TU are set to zero. This is a very unlikely error exit and if it occurs please contact NAG.
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7. Accuracy

For most cases the results should have a relative accuracy of max(0.5E—12, 50.0x€) where € is
the machine precision (see X02AJF). Thus on machines with sufficiently high precision the
results should be accurate to 12 significant digits. Some accuracy may be lost when o/2 or
1-0/2 is very close to 0.0, which will occur if CLEVEL is very close to 1.0. This should not
affect the usual confidence intervals used.

8. Further Comments
None.

9. Example

The following example reads in data showing the number of noxious weed seeds and the
frequency with which that number occured in 98 sub-samples of meadow grass. The data is taken
from Snedecor and Cochran [2], page 224. The sample mean is computed as the point estimate
of the Poisson parameter 6. The routine GO7ABF is then called to compute both a 95% and a
99% confidence interval for the parameter 6.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7ABF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
* .. Local Scalars ..
real CLEVEL, SUM, TL, TU, XMEAN
INTEGER I, IFAIL, IFREQ, N, NUM
* .. External Subroutines ..
EXTERNAL GO7ABF
* .. Intrinsic Functions ..
INTRINSIC real

.. Executable Statements ..

WRITE (NOUT,*) ’'GO7ABF Example Program Results’
Skip heading in data file

READ (NIN, *)

*

*
* Read in the number of Noxious Seeds in a sub sample and
* the frequency with which that number occurs.
*
* Compute the sample mean
*
SUM = 0.0e0
N=20

20 READ (NIN, *,END=40) NUM, IFREQ
SUM = SUM + real(NUM) *real( IFREQ)
N = N + IFREQ
GO TO 20
40 XMEAN = SUM/real(N)
WRITE (NOUT, *)
WRITE (NOUT,99999)
+ 'The point estimate of the Poisson parameter = ’, XMEAN

DO 60 I =1, 2

IF (I.EQ.1) THEN
CLEVEL = 0.95e0
WRITE (NOUT, *)
WRITE (NOUT, *)

+ 95 percent Confidence Interval for the estimate '

ELSE
CLEVEL = 0.99¢0
WRITE (NOUT, *)
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WRITE (NOUT, *)
+ 99 percent Confidence Interval for the estimate ’
END IF
IFAIL = 0

CALL GO7ABF (N, XMEAN, CLEVEL, TL, TU, IFAIL)

WRITE (NOUT,99998) '( *, TL, ' , ', Tu, ' )’
60 CONTINUE
STOP
*
99999 FORMAT (1X,A,F6.4)
99998 FORMAT (6X,A,F6.4,A,F6.4,A)
END

9.2. Program Data
GO7ABF Example Program Data

HOoJoOudWwWNHFO
©

o
o

9.3. Program Results
GO7ABF Example Program Results

The point estimate of the Poisson parameter = 3.0204

95 percent Confidence Interval for the estimate
( 2.6861 , 3.3848 )

99 percent Confidence Interval for the estimate
( 2.5874 , 3.5027 )
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GO7BBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7BBF computes maximum likelihood estimates and their standard errors for parameters of the
Normal distribution from grouped and/or censored data.

2. Specification
SUBROUTINE GO7BBF (METHOD, N, X, XC, IC, XMU, XSIG, TOL, MAXIT,

1 SEXMU, SEXSIG, CORR, DEV, NOBS, NIT, WK,
2 IFAIL)

INTEGER N, IC(N), MAXIT, NOBS(4), NIT, IFAIL

real X(N), XC(N), XMU, XSIG, TOL, SEXMU, SEXSIG, CORR,
1 DEV, WK(2*N)

CHARACTER*1 METHOD

3. Description

A sample of size n is taken from a Normal distribution with mean y and variance ¢* and consists
of grouped and/or censored data. Each of the n observations is known by a pair of values (L;,U;)
such that:

The data is represented as particular cases of this form:

exactly specified observations occur when L; = U, = x,,

right-censored observations, known only by a lower bound, occur when U; — oo,

left-censored observations, known only by a upper bound, occur when L; — —oo,

and interval-censored observations when L; < x; < U,.
Let the set A identify the exactly specified observations, sets B and C identify the observations
censored on the right and left respectively, and set D identify the observations confined between
two finite limits. Also let there be r exactly specified observations, i.e. the number in A. The
probability density function for the standard Normal distribution is

= Lexp(-1x2), - v
Z(x) = mexp( 2x ), <x<

and the cumulative distribution function is

X
PX)=1-Q(X) = j Z(x)dx.

The log-likelihood of the sample can be written as:
1
L(u,0) = —rlogo — 52{(}@—/1)/0‘}2 + Y log(Q(l,)) + %log(P(u,.)) + Y log(p,)-
A B D

where p;, = P(u;) — P(l;) and u; = (U;—w)/o, I, = (Li-p)/o

Let
Z(x;) _Z{;) - Z(u)
S(x;) = G’ Si(u;) = —
and
S, (Lu;) = w,Z(u;) - I;Z(Ii),

p;
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then the first derivatives of the log-likelihood can be written as:

alt(%yl =L,(po) = 0—22 (x;—p) + O'-IZS(I,') - U_lzs(—u,') + 0'_1251(1,‘,14;)
IT 2 > ) )
and
aL(a,U.O') = LZ (ﬂ,o‘) = _ro-_l + 0-32 (xi_/'l)Z + O'_IZI;S(I.-) _ O'_lzuiS(_ui)
o < 2 2

—0’1252 (I;u;)
D

The maximum likelihood estimates, /I and G, are the solution to the equations:

L,(46) =0 (1)
and
L,(4,6) =0 (2)

2 2 2
%, %5’5 and g—oé are denoted by L,,, L, and L,, respectively,
u

then estimates of the standard errors of i and & are given by:

A -L22 A _Lll
Se(l—l) = - . .20 Se(o-) = -y ,2
L11L2'2 - Ll2 L11L22 - Ll2

and an estimate of the correlation of £ and & is given by:
L 12
VL 12L22

To obtain the maximum likelihood estimates the equations (1) and (2) can be solved using
either the Newton-Raphson method or the Expectation-Maximization (EM) algorithm of
Dempster et al. [1].

Newton-Raphson Method:

This consists of using approximate estimates /I and & to obtain improved estimates £ + &jt and
G + 60 by solving

6L, + 66L, + L, = 0,
6L, + 66L,, + L, = 0,
for the corrections & and 46.

and if the second derivatives

EM Algorithm:
The expectation step consists of constructing the variable w; as follows:
ifie A, w, =x; (3)
ifie B, w,=EMx|x,>L;)=up+ oS(,); C))
ifie D, w,=EMx|L;, <x; <U;) =u+ oS, (l,u;). (6)
the maximization step consists of substituting (3), (4), (5) and (6) into (1) and (2) giving:
A=Y win ()
and
& =3 (n‘z.-—ﬁ)z/{wzT(i,->+zr(-a.-)+zrl(i,.,a,o} (8)
i=1 B C D
where

T(x) = S(){S(x)-x}, T, (Lu) = S} (Lu) + S,(Lu)
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and where w,, [, and i, are w;, I, and u, evaluated at /i and &. Formulas (3) to (8) are the basis
of the EM iterative procedure for finding 2 and &*. The procedure consists of alternatively
estimating £ and 67 using (7) and (8) and estimating {w;} using (3) to (6).

In choosing between the two methods a general rule is that the Newton-Raphson method
converges more quickly but requires good initial estimates whereas the EM algorithm converges
slowly but is robust to the initial values. In the case of the censored Normal distribution, if only
a small proportion of the observations are censored then estimates based on the exact
observations should give good enough initial estimates for the Newton-Raphson method to be
used. If there are a high proportion of censored observations then the EM algorithm should be
used and if high accuracy is required the subsequent use of the Newton-Raphson method to
refine the estimates obtained from the EM algorithm should be considered.

4. References

[1] DEMPSTER, A.P., LAIRD, N.M. and RUBIN, D.B.
Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion).
J. R. Statist. Soc. B, 39, pp. 1-38, 1977.

[2] SWAN, A.V.
Algorithm AS16. Maximum Likelihood Estimation from Grouped and Censored Normal
Data.
Appl. Statist., 18, pp. 110-114, 1969.

[3] WOLYNETZ, M.S.
Maximum Likelihood Estimation from Confined and Censored Normal Data.
Appl. Statist., 28, pp. 185-195, 1979.

5. Parameters
METHOD — CHARACTER*1. Input
On entry: indicates whether the Newton-Raphson or EM algorithm should be used.
If METHOD = 'N', then the Newton-Raphson algorithm is used.
If METHOD = 'E', then the EM algorithm is used.
Constraint: METHOD = 'N' or 'E'.

2: N - INTEGER. Input
On entry: the number of observations, 7.
Constraint: N 2 2.

3:  X(N) - real array. Input
On entry: the observations x;, L; or U,, fori = 1,2,...,n.
If the observation is exactly specified — the exact value, x,.
If the observation is right-censored — the lower value, L,.
If the observation is left-censored — the upper value, U,.
If the observation is interval-censored — the lower or upper value, L; or U;, (see XC).

4:  XC(N) — real array. Input
On entry: if the jth observation, for j = 1,2,...,n is an interval-censored observation then
XC(j) should contain the complementary value to X(j), that is, if X(j) < XC(j), then
XC(j) contains upper value, U,, and if X(j) > XC(j), then XC(j) contains lower value,
L.

l

Note if X(j) = XC(j) then the observation is ignored.
Otherwise if the jth observation is exact or right- or left-censored XC(j) need not be set.

[NP2136/15] Page 3



GO7BBF

GO7 — Univariate Estimation

5:  IC(N) — INTEGER array. Input

On entry: IC(i) contains the censoring codes for the ith observation, for i = 1,2,...,n.
If IC(i) = O the observation is exactly specified.

If IC(i) = 1 the observation is right-censored.
If IC(i) = 2 the observation is left-censored.
If IC(i) = 3 the observation is interval-censored.

Constraint: IC(i) = 0,1,2o0r 3, fori = 1,2,...,n.

6: XMU - real. Input!/ Output

Onentry: if XSIG > 0.0 the initial estimate of the mean, y; otherwise XMU need not be
set.

On exit: the maximum likelihood estimate, fI, of p.

7 XSIG - real. Input/ Output

On entry: specifies whether an initial estimate of ¢ and o are to be supplied. If XSIG > 0.0,
then XSIG is the initial estimate of o and XMU must contain an initial estimate of u.

If XSIG < 0.0, then initial estimates of XMU and XSIG are calculated internally from:

(a) the exact observations, if the number of exactly specified observations is 2 2; or

(b) the interval-censored observations; if the number of interval-censored observations is
2 1;or

(c) they are set to 0.0 and 1.0 respectively.

On exit: the maximum likelihood estimate, &, of o.

8: TOL — real. Input

On entry: the relative precision required for the final estimates of 1 and o. Convergence is
assumed when the absolute relative changes in the estimates of both 4 and o are less than
TOL.

If TOL = 0.0, then a relative precision of 0.000005 is used.
Constraint. machine precision < TOL < 1.0 or TOL = 0.0.

9: MAXIT - INTEGER. Input

On entry: the maximum number of iterations.
If MAXIT < 0, then a value of 25 is used.

10: SEXMU - real. Output

On exit: the estimate of the standard error of f1.

11: SEXSIG - real. Output

On exit: the estimate of the standard error of 6.

12: CORR - real. Output

On exit: the estimate of the correlation between £ and &.

13: DEV - real. Outpur

On exit: the maximized log-likelihood, L(/1,6).

14: NOBS(4) — INTEGER array. Output

Page 4

On exit: the number of the different types of each observation;

NOBS(1) contains number of right-censored observations.
NOBS(2) contains number of left-censored observations.
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NOBS(3) contains number of interval-censored observations.
NOBS(4) contains number of exactly specified observations.

15: NIT — INTEGER. Output
On exit: the number of iterations performed.

16: WK(2*N) — real array. Workspace

17: IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, METHOD # 'N' or E|,
or N < 2,
or IC@) # 0,1, 2 or 3, for some i,
or TOL < 0.0,
or 0.0 < TOL < machine precision,
or TOL > 1.0.

IFAIL = 2

The chosen method failed to converge in MAXIT iterations. The user should either increase
TOL or MAXIT or, if using the EM algorithm try using the Newton-Raphson method with
initial values those returned by the current call to GO7BBF. All returned values will be
reasonable approximations to the correct results if MAXIT is not very small.

IFAIL = 3

The chosen method is diverging. This will be due to poor initial values. The user should try
different initial values.

IFAIL = 4

GO7BBF was unable to calculate the standard errors. This can be caused by the method
starting to diverge when the maximum number of iterations was reached.

7. Accuracy
The accuracy is controlled by the parameter TOL.

If high precision is requested with the EM algorithm then there is a possibility that, due to the
slow convergence, before the correct solution has been reached the increments of [ and & may be
smaller than TOL and the process will prematurely assume convergence.

8. Further Comments
The process is deemed divergent if three successive increments of 4 or ¢ increase.

9. Example

A sample of 18 observations and their censoring codes are read in and the Newton-Raphson
method used to compute the estimates.
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9.1.

9.2.

Page 6

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO07BBF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=20)
* .. Local Scalars ..
real CORR, DEV, SEXMU, SEXSIG, TOL, XMU, XSIG
INTEGER I, IFAIL, MAXIT, N, NIT
CHARACTER METHOD
* .. Local Arrays ..
real WK(2*NMAX), X(NMAX), XC(NMAX)
INTEGER IC(NMAX), NOBS(4)
* .. External Subroutines ..
EXTERNAL GO7BBF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO7BBF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, METHOD, XMU, XSIG, TOL, MAXIT
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),XC(I),IC(I),I=1,N)
IFAIL = 0

CALL GO7BBF (METHOD, N, X,XC, IC,XMU, XSIG, TOL,MAXIT, SEXMU, SEXSIG,
+ CORR, DEV, NOBS, NIT, WK, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT, 99999)
WRITE (NOUT,99999)
WRITE (NOUT,99999)
WRITE (NOUT,99999)
WRITE (NOUT,99999)
WRITE (NOUT, 99998)

Mean = ’/, XMU

Standard deviation = ', XSIG

Standard error of mean = ’, SEXMU
Standard error of sigma = ’, SEXSIG
Correlation coefficient = ’, CORR

Number of right censored observations = '/,

N N N N NN

+ NOBS(1) ,
WRITE (NOUT,99998) ’ Number of left censored observations = ’,
+ NOBS(2)
WRITE (NOUT,99998)
+ ’ Number of interval censored observations = ’, NOBS(3)
WRITE (NOUT,99998)
+ ’ Number of exactly specified observations = ', NOBS(4)

WRITE (NOUT,99998) ’ Number of iterations = ’, NIT
WRITE (NOUT,99999) ’ Log-likelihood = ', DEV
END IF
STOP
*
99999 FORMAT (1X,A,F8.4)
99998 FORMAT (1X,A,I2)
END

Program Data

GO7BBF Example Program Data
18 N’ 4.0 1.0 0.00005 50

4.5 0.0 0 5.& 0.0 03.90.005.10.004.60.004.80.00
2.9 0.00 6.3 0.005.50.004.60.004.10.0025.20.00
3.2 0.01 4.00.013.10.015.10.023.80.022.22.53
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9.3. Program Results
GO7BBF Example Program Results

Mean = 4.4924

Standard deviation = 1.0196

Standard error of mean = 0.2606

Standard error of sigma = 0.1940
Correlation coefficient = 0.0160

Number of right censored observations = 3
Number of left censored observations = 2
Number of interval censored observations = 1
Number of exactly specified observations = 12
Number of iterations = 5

Log-likelihood = -22.2817
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GO7BEF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7BEF computes maximum likelihood estimates for parameters of the Weibull distribution
from data which may be right-censored.

2. Specification
SUBROUTINE GO7BEF (CENS, N, X, IC, BETA, GAMMA, TOL, MAXIT, SEBETA,

1 SEGAM, CORR, DEV, NIT, WK, IFAIL)
INTEGER N, IC(*), MAXIT, NIT, IFAIL
real X(N), BETA, GAMMA, TOL, SEBETA, SEGAM, CORR, DEV, WK(N)

CHARACTER*1 CENS

3. Description

GO7BEF computes maximum likelihood estimates of the parameters of the Weibull distribution
from exact or right-censored data.

For n realizations, y;, from a Weibull distribution a value x; is observed such that
X, SY;.
There are two situations:

(a) exactly specified observations, when x; = y;
(b) right-censored observations, known by a lower bound, when x; < y,.

The probability density function of the Weibull distribution, and hence the contribution of an
exactly specified observation to the likelihood, is given by:

f(x:Ay) = Ayx"lexp(-Ax"), x>0, fordy> 0;

while the survival function of the Weibull distribution, and hence the contribution of a
right-censored observation to the likelihood, is given by:

S(x;Ay) = exp(-Ax"), x>0, fordy>0.

If d of the n observations are exactly specified and indicated by i € D and the remaining (n-d)
are right-censored, then the likelihood function, Like(4,7) is given by

Like(A,y) o< (/'Ly)d(igx;"")exp(—léx,.’).

To avoid possible numerical instability a different parameterization B,y is used, with
B = log(A). The kemel log-likelihood function, L(B,y), is then:

L(By) = diog(p) + df + (1=1) 3 log(x;) — e’ Tx/.
ie i=1
oL oL 9°L 9°L o’L
E, W, a—ﬂ—z—, m and —yz are denoted by Ll’ LZ’ L“, Ll2 and L22’
respectively, then the maximum likelihood estimates, B and $, are the solution to the equations:
L(B9) =0 M
and

L,(B9) = 0. @)
Estimates of the asymptotic standard errors of ﬁ and 7 are given by:

_L22 A _Lll
se = /————, se = [
(ﬁ) LuLzz_sz (Y) L11L22‘L122
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An estimate of the correlation coefficient of 3 and 7 is given by:
Ly,
Note: if an estimate of the original parameter A is required, then
A=exp(f) and se(l) = Ase(p).

The equations (1) and (2) are solved by the Newton-Raphson iterative method with adjustments
made to ensure that 7 > 0.0.

4, References

[1] GROSS, AJ. and CLARK, V.A.
Survival Distributions: Reliability Applications in the Biomedical Sciences.
Wiley, 1975.

[2] KALBFLEISCH, J.D. and PRENTICE, R.L.
The Statistical Analysis of Failure Time Data.
Wiley, 1980.

5. Parameters

1:  CENS — CHARACTER*1. Input
On entry: indicates whether the data is censored or non-censored.
If CENS = N, then each observation is assumed to be exactly specified. IC is not

referenced.
If CENS = 'C', then each observation is censored according to the value contained in IC(i),
fori = 1,2,...,n.

Constraint: CENS = 'C' or 'N'.

2: N - INTEGER. Input
On entry: the number of observations, 7.
Constraint: N 2 1.

3:  X(N) - real array. Input
Onentry: X(i) contains the ith observation, x;, for i = 1,2,...,n.
Constraint: X(i) > 0.0, fori = 1,2,...,n.

4:  IC(*) — INTEGER array. Input

Note: if CENS = 'C', then IC must be dimensioned at least N, otherwise IC can be
dimensioned 1.

Onentry: if CENS = 'C', then IC(i) contains the censoring codes for the ith observation,
fori = 1,2,...,n.

If IC(i) = O, the ith observation is exactly specified.

If IC(i) = 1, the ith observation is right-censored.

If CENS = 'N', then IC is not referenced.

Constraint: if CEN = 'C', then IC(i) = Qor 1, fori = 1,2,...,n.

5: BETA - real. Output
On exit: the maximum likelihood estimate, ﬁ, of B.
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6:

10:

11:

12:

13:

14:

15:

GAMMA - real. Input/ Output
On entry: indicates whether an initial estimate of y is provided.

If GAMMA > 0.0, it is taken as the initial estimate of ¥ and an initial estimate of Bis
calculated from this value of y.

If GAMMA < 0.0, then initial estimates of ¥ and f3 are calculated, internally, providing the
data contains at least two distinct exact observations. (If there are only two distinct exact
observations, then the largest observation must not be exactly specified.) See Section 8 for
further details.

On exit: contains the maximum likelihood estimate, 9, of 7.

TOL - real. Input

On entry: the relative precision required for the final estimates of B and y. Convergence is
assumed when the absolute relative changes in the estimates of both § and y are less than
TOL.

If TOL = 0.0, then a relative precision of 0.000005 is used.
Constraint: machine precision < TOL < 1.0 or TOL = 0.0.

MAXIT — INTEGER. Input
On entry: the maximum number of iterations allowed.
If MAXIT < 0, then a value of 25 is used.

SEBETA - real. Output
On exit: an estimate of the standard error of ﬁ

SEGAM - real. Output
On exit: an estimate of the standard error of 7.

CORR - real. Output
On exit: an estimate of the correlation between ﬁ and 9.

DEV - real. Output
On exit: the maximized kemel log-likelihood, L(j,7).

NIT — INTEGER. Output
On exit: the number of iterations performed.

WK (N) — real array. Workspace

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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IFAIL =1

On entry, CENS # 'N' or 'C/,

or N < 1,

or TOL < 0.0,

or 0.0 < TOL < machine precision,

or TOL > 1.0.
IFAIL = 2

On entry, the ith observation, X (i) < 0.0, for some i = 1,2,...,n,

or the ith censoring code, IC(i) # O or 1, for some i = 1,2,...,.n and CENS = 'C".
IFAIL = 3

On entry, there are no exactly specified observations, or the routine was requested to
calculate initial values and there are either less than two distinct exactly specified
observations or there are exactly two and the largest observation is one of the exact
observations.

IFAIL = 4

The method has failed to converge in MAXIT iterations. The user should increase TOL or
MAXIT.

IFAIL = 5

Process has diverged. The process is deemed divergent if three successive increments of B
or y increase or if the Hessian matrix of the Newton-Raphson process is singular. Either
different initial estimates should be provided or the data should be checked to see if the
Weibull distribution is appropriate.

IFAIL = 6

A potential overflow has been detected. This is an unlikely exit usually caused by a large
input estimate of y.

7. Accuracy

Given that the Weibull distribution is a suitable model for the data and that the initial values are
reasonable the convergence to the required accuracy, indicated by TOL, should be achieved.

8. Further Comments

The initial estimate of ¥ is found by calculating a Kaplan-Meier estimate of the survival function,
S(x), and estimating the gradient of the plot of log(~log(S(x))) against x. This requires the
Kaplan-Meier estimate to have at least two distinct points.

The initial estimate of B, given a value of ¥, is calculated as

,3=Iog nd .
Zx;?
=1

9. Example

In a study, 20 patients receiving an analgesic to relieve headache pain had the following recorded
relief times (in hours): 1.114131.7191.81.6221.72.74.11.81512143.01.723 1.6
2.0 (See Gross and Clarke [1]). This data is read in and a Weibull distribution fitted assuming no
censoring; the parameter estimates and their standard errors are printed.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7BEF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=20)
* .. Local Scalars ..
real BETA, CORR, DEV, GAMMA, SEBETA, SEGAM, TOL
INTEGER I, IFAIL, MAXIT, N, NIT
* .. Local Arrays ..
real WK (NMAX), X(NMAX)
INTEGER IC(NMAX)
* .. External Subroutines ..
EXTERNAL GO7BEF
* .. Executable Statements ..
WRITE (NOUT,*) ’'GO7BEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),I=1,N)
* If data were censored then IC would also be read in.
* lLeave GO7BEF to calculate initial values
GAMMA = 0.0e0
* Use default values for TOL and MAXIT
TOL = 0.0e0
MAXIT = 0
IFAIL = 0

CALL GO7BEF(’No censor’,N,X,IC,BETA,GAMMA,TOL,MAXIT,SEBETA,
+ SEGAM, CORR, DEV, NIT, WK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,99999) ’ BETA = ', BETA, ' Standard error = ',
+ SEBETA
WRITE (NOUT,99999) ' GAMMA = ', GAMMA, ! Standard error = ',
+ SEGAM
END IF
STOP
*
99999 FORMAT (1X,2(A,F10.4))
END

9.2. Program Data

GO7BEF Example Program Data
20

1 1.9 1.8 1.6 2.
4 1.4 3.0 1.7 2.

wr

.11.4 1.3 1.7
.11.81.51.2
9.3. Program Results

GO7BEF Example Program Results

BETA = -2.1073 Standard error = 0.4627
GAMMA = 2.7870 Standard error = 0.4273
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GO7CAF - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7CAF computes a t-test statistic to test for a difference in means between two Normal
populations, together with a confidence interval for the difference between the means.

2. Specification
SUBROUTINE GO7CAF (TAIL, EQUAL, NX, NY, XMEAN, YMEAN, XSTD, YSTD,

1 CLEVEL, T, DF, PROB, DL, DU, IFAIL)
INTEGER NX, NY, IFAIL
real XMEAN, YMEAN, XSTD, YSTD, CLEVEL, T, DF, PROB, DL, DU

CHARACTER*1 TAIL, EQUAL

3. Description
Consider two independent samples, denoted by X and Y, of size n, and n, drawn from two
Normal populations with means x, and y,, and variances o? and of respectively. Denote the
sample means by ¥ and ¥ and the sample variances by s? and s respectively.

GO7CAF calculates a test statistic and its significance level to test the null hypothesis
H, : p, = p, together with upper and lower confidence limits for u, — u,. The test used
depends on whether or not the two population variances are assumed to be equal.

(1) Tt is assumed that the two variances are equal, that is 07 = 0.
The test used is the two sample z-test. The test statistic ¢ is defined by;
tops = x-J
° s{/(1/n)+(1/in,)
(n,-1)s + (n,—1)s]
n,+n, -2
Under the null hypothesis H,, this test statistic has a ¢-distribution with (n,+n,—2) degrees
of freedom.
The test of H,, is carried out against one of three possible alternatives;
H, : p, # p,; the significance level, p = P(t2]t,,1), i.e. a two-tailed probability.
H, : p, > p,; the significance level, p = P(r21,,), i.e. an upper tail probability.
H, : p, < p; the significance level, p = P(t<t,,), i.e. a lower tail probability.
Upper and lower 100(1-a)% confidence limits for 4, — p, are calculated as:
(F-9) T ti_qasyf(Un)+(1/n,),
where ¢,_,, is the 100(1-0/2) percentage point of the t-distribution with (n, +n,-2)
degrees of freedom.
(2) It is not assumed that the two variances are equal.

If the population variances are not equal the usual two sample t-statistic no longer has a
t-distribution and an approximate test is used.
This problem is often referred to as the Behrens-Fisher problem, see Kendall and Stuart [2].
The test used here is based on Satterthwaites procedure. To test the null hypothesis the test
statistic ¢’ is used where

o o EF

obs — se(X-y)

where s? = is the pooled variance of the two samples.
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_ st 52
where se(X¥-y) = _[-= + X,
n, n,
A r-distribution with f degrees of freedom is used to approximate the distribution of ¢’
se(X—y)*
sf/n,‘2 + syzlny2 )
(n,-1) (n,-1)
The test of H,, is carried out against one of the three alternative hypotheses described above,
replacing ¢ by ¢'and ¢, by £, .
Upper and lower 100(1-a)% confidence limits for u, —M, are calculated as:
(x=y) £ t;_gp8e(X-y),
where ¢,_,, is the 100(1-a/2) percentage point of the ¢-distribution with f degrees of
freedom.

where f =

4. References

[1] JOHNSON, M.G. and KOTZ, A.
The Encyclopedia of Statistics, Volume 2.
Griffin, 1969.

[2] KENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, Volume 2.
Griffin, 1969.

[3] SNEDECOR, G.W. and COCHRAN, W.G.
Statistical Methods.
Iowa State University Press, 1967.

5. Parameters
1: TAIL - CHARACTER*1. Input

On entry: indicates which tail probability is to be calculated, and thus which alternative
hypothesis is to be used.

If TAIL = 'T', the two tail probability, i.e. H, : u, # Hy.
If TAIL = 'U’, the upper tail probability, i.e. H, : y, > H,.
If TAIL = 'L, the lower tail probability, i.e. H, : u, < H,.
Constraint: TAIL = 'T', 'U' or 'L".

2:  EQUAL — CHARACTER*1. Input
On entry: indicates whether the population variances are assumed to be equal or not.
If EQUAL = 'E/, the population variances are assumed to be equal, that is o7 = 2.
If EQUAL = 'U', the population variances are not assumed to be equal.

Constraint: EQUAL = 'E' or 'U'.

3:  NX - INTEGER. Input
On entry: the size of the X sample, n,.
Constraint: NX 2 2.

4: NY - INTEGER. Input
Onentry: the size of the Y sample, n,.
Constraint: NY 2 2.
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GO07 - Univariate Estimation GO7CAF

5:

10:

11:

12:

13:

14:

15:

XMEAN - real. Input
On entry: the mean of the X sample, x.

YMEAN - real. Input
On entry: the mean of the Y sample, y.

XSTD - real. Input
On entry: the standard deviation of the X sample, s,.
Constraint: XSTD > 0.0.

YSTD - real. Input
On entry: the standard deviation of the Y sample, s,.
Constraint: YSTD > 0.0.

CLEVEL - real. Input

On entry: the confidence level, 1 — o, for the specified tail. For example CLEVEL = 0.95
will give a 95% confidence interval.

Constraint: 0.0 < CLEVEL < 1.0.

T — real. Output
On exit: contains the test statistic, ,,, Or ?,,,.

DF — real. Output
On exit: contains the degrees of freedom for the test statistic.

PROB - real. Output
On exit: contains the significance level, that is the tail probability, p, as defined by TAIL.

DL - real. Output
On exit: contains the lower confidence limit for u, — 4.

DU - real. Output
On exit: contains the upper confidence limit for u, — u,.

IFAIL — INTEGER. Input/ Output

On entry: TFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, TAIL # 'T', U'or 'L,
or EQUAL # E'or 'U',
or NX < 2,
or NY < 2,
or XSTD < 0.0,
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9.1.

or YSTD < 0.0,

or CLEVEL < 0.0,

or CLEVEL 2 1.0.
Accuracy

The computed probability and the confidence limits should be accurate to approximately 5
significant figures.

Further Comments
The sample means and standard deviations can be computed using GO1AAF.

Example

The following example program reads the two sample sizes and the sample means and standard
deviations for two independent samples. The data is taken from Snedecor and Cochran, page 116,
from a test to compare two methods of estimating the concentration of a chemical in a vat. A test
of the equality of the means is carried out first assuming that the two population variances are
equal and then making no assumption about the equality of the population variances.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7CAF Example Program Text
* Mark 15 Release. NAG Copyright 1991.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
* .. Local Scalars ..
real CLEVEL, DF, DL, DU, PROB, T, XMEAN, XSTD, YMEAN,
+ YSTD
INTEGER IFATIL, NX, NY
* .. External Subroutines ..
EXTERNAL GO7CAF
* .. Executable Statements ..
WRITE (NOUT,*) ‘GO7CAF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) NX, NY

READ (NIN,*) XMEAN, YMEAN, XSTD, YSTD
READ (NIN,*) CLEVEL

IFAIL = 0

CALL GO7CAF(’Two’,’Equal’, NX,NY, XMEAN, YMEAN, XSTD, YSTD, CLEVEL, T, DF,
+ PROB, DL, DU, IFAIL)

WRITE (NOUT, *)

WRITE (NOUT,*) ’‘Assuming population variances are equal.’
WRITE (NOUT, *)

WRITE (NOUT,99999) 't test statistic =/, T

WRITE (NOUT,99998) ’Degrees of freedom = ’, DF

WRITE (NOUT,99997) ’Significance level = ’, PROB

WRITE (NOUT,99999)
+ ’Lower confidence limit for difference in means = !, DL
WRITE (NOUT, 99999)
+ 'Upper confidence limit for difference in means ’
WRITE (NOUT, %)

IFAIL = 0

[}
~

o]

=]
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CALL GO7CAF (’Two’,’Unequal’,NX,NY, XMEAN, YMEAN, XSTD, YSTD, CLEVEL, T,
+ DF, PROB, DL, DU, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘No assumptions about population variances .’
WRITE (NOUT, *)
WRITE (NOUT,99999) ‘t test statistic ="', T
WRITE (NOUT,99997) ’Degrees of freedom = ', DF
WRITE (NOUT,99997) ’Significance level = ', PROB
WRITE (NOUT, 99999)
+ ’Lower confidence limit for difference in means = ', DL
WRITE (NOUT, 99999)
+ 'Upper confidence limit for difference in means = r, DU
STOP
*
99999 FORMAT (1X,A,F10.4)
99998 FORMAT (1X,A,F8.1)
99997 FORMAT (1X,A,F8.4)
END

9.2. Program Data
GO7CAF Example Program Data

4 8

25.0 21.0
0.8185 4.2083
0.95

9.3. Program Results
GO7CAF Example Program Results

Assuming population variances are equal.

t test statistic = 1.8403
Degrees of freedom = 10.0
Significance level = 0.0955
Lower confidence limit for difference in means = -0.8429
Upper confidence limit for difference in means = 8.8429

No assumptions about population variances .

t test statistic = 2.5922
Degrees of freedom = 7.9925
Significance level = 0.0320
Lower confidence limit for difference in means = 0.4410

Upper confidence limit for difference in means 7.5590
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GO7DAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7DAF finds the median, median absolute deviation, and a robust estimate of the standard
deviation for a set of ungrouped data.

2. Specification
SUBROUTINE GO7DAF (N, X, Y, XME, XMD, XSD, IFAIL)

INTEGER N, IFAIL
real X(N), Y(N), XME, XMD, XSD

3. Description
The data consists of a sample of size n, denoted by x,,x,,...,x,,, drawn from a random variable X.
GO7DAF first computes the median,
0,neq = med{x;},

med

and from this the median absolute deviation can be computed,
Omea = med{ lxi- 9med|}'

Finally, a robust estimate of the standard deviation is computed,

Ohg = Opeg! D7 (0.75)
where @' (0.75) is the value of the inverse standard Normal function at the point 0.75.
GOTDAF is based upon subroutine LTMDDV within the ROBETH library, see Marazzi [2].

4., References

[1] HUBER, P.J.
Robust Statistics.
Wiley, 1981.

[2] MARAZZI, A.
Subroutines for Robust Estimation of Location and Scale in ROBETH.
Institut Universitaire de Médecine Sociale et Préventive, Lausanne, 1987.
(Cah Rech Doc TUMSP, No 3 ROB 1).

5. Parameters

1: N - INTEGER. Input
On entry: the number of observations, n.
Constraint: N > 1.

2:  X(N) - real array. Input
On entry: the vector of observations, X;,X,,....X,.

3:  Y(N) — real array. Output
On exit: the observations sorted into ascending order.

4 XME - real. Output
On exir: the median, 8,,,,.
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Page 2

XMD - real. Output
On exit: the median absolute deviation, g,,,.

XSD - real. Output
On exit: the robust estimate of the standard deviation, o7,,.

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1.

Accuracy
The computations are believed to be stable.

Further Comments

Unless otherwise stated in the implementation document, the routine may be called with the same
actual array supplied for parameters X and Y, in which case the sorted data values will overwrite
the original contents of X. However this is not standard Fortran 77, and may not work on all
systems.

Example

The following program reads in a set of data consisting of eleven observations of a variable X.
The median, median absolute deviation and a robust estimate of the standard deviation are
calculated and printed along with the sorted data in output array Y.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7DAF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=25)
* .. Local Scalars ..
real XMD, XME, XSD
INTEGER I, IFAIL, N
* .. Local Arrays
real X(NMAX), Y(NMAX)
* .. External Subroutines
EXTERNAL GO7DAF
* .. Executable Statements

WRITE (NOUT,*) ’"GO7DAF Example Program Results’
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* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N
WRITE (NOUT, *)
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),I=1,N)
IFAIL = 0

CALL GO7DAF(N,X,Y,XME,XMD,XSD, IFAIL)

WRITE (NOUT,*) ’'Output Y:’/
WRITE (NOUT, 99999) (Y(I),I=1,N)
WRITE (NOUT, *)
WRITE (NOUT,99998) 'XME = ’, XME, ', XMD = r, XMb, ’, XSD = ',
+ XSD
ELSE
WRITE (NOUT,99997) ’N is out of range: N =', N
END IF
STOP
*
99999 FORMAT (1X,11F7.3)
99998 FORMAT (1X,A,F6.3,A,F6.3,A,F6.3)
99997 FORMAT (1X,A,I5)
END

9.2. Program Data

GO7DAF Example Program Data
11 : N, NUMBER OF OBSERVATIONS
13.0 11.0 16.0 5.0 3.0 18.0 9.0 8.0 6.0 27.0 7.0 : X, OBSERVATIONS

9.3. Program Results
GO7DAF Example Program Results
Output Y:
3.000 5.000 6.000 7.000 8.000 9.000 11.000 13.000
16.000 18.000 27.000

XME = 9.000, XMD = 4.000, XSD = 5.930
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GO7DBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7DBF computes an M-estimate of location with (optional) simultaneous estimation of the
scale using Huber’s algorithm.

2. Specification
SUBROUTINE GO7DBF (ISIGMA, N, X, IPSI, C, Hl, H2, H3, DCHI, THETA,

1 SIGMA, MAXIT, TOL, RS, NIT, WRK, IFAIL)
INTEGER ISIGMA, N, IPSI, MAXIT, NIT, IFAIL

real X(N), C, H1, H2, H3, DCHI, THETA, SIGMA, TOL,
1 RS(N), WRK(N)

3. Description
The data consists of a sample of size n, denoted by x,,x,,...,x,, drawn from a random variable X.
The x; are assumed to be independent with an unknown distribution function of the form
F((x;-0)/0)

where @is a location parameter, and o is a scale parameter. M-estimators of 8and o are given by
the solution to the following system of equations:

5 ¥(5-8)/6) = 0 M
> #((xi~9)19)

where y and y are given functions, and f3 is a constant, such that & is an unbiased estimator when
x;, for i = 1,2,...,n has a normal distribution. Optionally, the second equation can be omitted and

the first equation is solved for 6 using an assigned value of o = 0.

c

(n-1)p (2)

A

x.—0
The values of w< '6' )6‘ are known as the Winsorized residuals.

The following functions are available for y and y in GO7DBF;
(a) Null Weights

2
() =t x(t) = 5
Use of these null functions leads to the mean and standard deviation of the data.
(b) Huber’s Function
2
y(¢) = max(—c,min(c,t)) x(t) = % lt] € d

2

d
x(2) 5 [t] > d

(¢) Hampel’s Piecewise Linear Function
Yot (0= =Wy (<1)
=t 0<t<sh x(t)
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= h, h, <t <h,
2
=0 t > h,y
(d) Andrew’s Sine Wave Function
2
w(t) = sint¢ -n<t<nrw x(t) = E2|_ |t < d
d2
=0 otherwise x() = 5 lt| > d
(e) Tukey’s Bi-weight
2
W) = (1-r)? Il < 1 o= sa
d2
=0 otherwise x(t) = 5 lt| > d

where c, hy, h,, h; and d are constants.
Equations (1) and (2) are solved by a simple iterative procedure suggested by Huber:

6, = ,. %i e"' &2
* ﬁ(n—l) ,-1 Oy -

and
A A _ok
6, =6,_, + MR P
k k-1 § o.k ) k
or
6, = o, if o is fixed.

The initial values for & and & may either be user-supplied or calculated within GO7DBF as the
sample median and an estimate of ¢ based on the median absolute deviation respectively.

GO7DBF is based upon subroutine LYHALG within the ROBETH library, see Marazzi [3].

4. References

(1] HAMPEL, F.R., RONCHETTI, E.M., ROUSSEEUW, P.J. and STAHEL, W.A.
Robust Statistics. The Approach Based on Influence Functions.
Wiley, 1986.

[2] HUBER, P.J.
Robust Statistics.
Wiley, 1981.

[3] MARAZZI, A.
Subroutines for Robust Estimation of Location and Scale in ROBETH.
Institut Universitaire de Médecine Sociale et Pfeventive, Lausanne, 1987.
(Cah Rech Doc IUMSP, No 3 ROB 1).

5. Parameters
1:  ISIGMA - INTEGER. Input

Onentry:. the value assigned to ISIGMA determines whether & is to be simultaneously
estimated.

ISIGMA = 0

The estimation of & is bypassed and SIGMA is set equal to o,;
ISIGMA =1

G is estimated simultaneously.

Page 2 [NP1692/14)



GO07 — Univariate Estimation GO7DBF

>

10:

11:

N — INTEGER. Input
On entry: the number of observations, n.
Constraint: N > 1.

X(N) - real array. Input
On entry: the vector of observations, x,X,,...,X,.

IPSI — INTEGER. Input
On entry: which y function is to be used.
IPSI = 0,

w(r) =
IPSI =
Huber’s function,
IPSI = 2,
Hampel’s piecewise linear function,
IPSI = 3,
Andrew’s sine wave,
IPSI = 4,
Tukey’s bi-weight.

C - real. Workspace

If IPSI = 1 on entry, C must specify the parameter, ¢, of Huber’s y function. C is not
referenced if IPSI # 1.

Constraint: C > 0.0 if IPSI = 1.

H1 - real. Input
H2 - real. Input
H3 - real. Input

If IPSI = 2 on entry, H1, H2, and H3 must specify the parameters h,, h,, and h;, of
Hampel’s piecewise linear y function. H1, H2, and H3 are not referenced if IPSI # 2.

Constraint: 0 < H1 < H2 < H3 and H3 > 0.0 if IPSI = 2.

DCHI - real. Input
On entry: the parameter, d, of the y function. DCHI is not referenced if IPSI = 0.
Constraint: DCHI > 0.0 if IPST = 0.

THETA - real. Input/ Output

Onentry: if SIGMA > 0 then THETA must be set to the required starting value of the
estimation of the location parameter 6. A reasonable initial value for 8 will often be the
sample mean or median.

On exit: the M-estimate of the location parameter, b.

SIGMA - real. Input/ Output
The role of SIGMA depends on the value assigned to ISIGMA (see above) as follows:
ISIGMA =1

On entry: SIGMA must be assigned a value which determines the values of the starting
points for the calculations of 6 and 6. If SIGMA < 0.0 then GO7DBF will determine
the starting points of Hand &. Otherwise the value assigned to SIGMA will be taken as
the starting point for 6, and THETA must be assigned a value before entry, see above.
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12:

13:

14:

15:

16:

17:

ISIGMA = 0
On entry: SIGMA must be assigned a value which determines the value of &,, which is

held fixed during the iterations, and the starting value for the calculation of o If
SIGMA < 0, then GO7DBF will determine the value of o, as the median absolute

deviation adjusted to reduce bias (see GO7DAF) and the starting point for 6.
Otherwise, the value assigned to SIGMA will be taken as the value of o, and THETA
must be assigned a relevant value before entry, see above.

Onexit: SIGMA contains the M-estimate of the scale parameter, &, if ISIGMA was
assigned the value 1 on entry, otherwise SIGMA will contain the initial fixed value o,.

MAXIT — INTEGER. Input
On entry: the maximum number of iterations that should be used during the estimation.
Suggested value: MAXIT = 50.

Constraint: MAXIT > 0.

TOL - real. Input

On entry: the relative precision for the final estimates. Convergence is assumed when the
increments for THETA, and SIGMA are less than TOLxmax(1.0,0,_;).

Constraint:. TOL > 0.0.

RS(N) — real array. Output
On exit: the Winsorized residuals.

NIT - INTEGER. Output
On exit: the number of iterations that were used during the estimation.

WRK(N) - real array. Output
On exit: if SIGMA < 0.0 on entry, WRK will contain the n observations in ascending order.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is O.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1,
or MAXIT < 0,
or TOL < 0.0,
or ISIGMA # 0 or 1,
or IPSI < 0,
or IPSI > 4.
IFAIL = 2
On entry, C < 0.0 and IPSI = 1,
or H1 < 0.0 and IPSI = 2,
or Hl = H2 = H3 = 0.0 and IPSI = 2,
or H1 > H2 and IPSI = 2,
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or H1 > H3 and IPSI = 2,

or H2 > H3 and IPSI = 2,

or DCHI < 0.0 and IPSI # 0.
IFAIL = 3

On entry, all elements of the input array X are equal.

IFAIL = 4

SIGMA, the current estimate of o, is zero or negative. This error exit is very unlikely,
although it may be caused by too large an initial value of SIGMA.

IFAIL = 5
The number of iterations required exceeds MAXIT.

IFAIL = 6
On completion of the iterations, the Winsorized residuals were all zero. This may occur
when using the ISIGMA = 0 option with a redescending y function, i.e. Hampel’s
piecewise linear function, Andrew’s sine wave, and Tukey’s biweight.

x; — 6
If the given value of ¢ is too small, then the standardised residuals — d

, will be large

and all the residuals may fall into the region for which y(z) = 0. This may incorrectly
terminate the iterations thus making THETA and SIGMA invalid.

Re-enter the routine with a larger value of o, or with ISIGMA = 1.

7. Accuracy
On successful exit the accuracy of the results is related to the value of TOL, see Section 5.

8. Further Comments

When the user supplies the initial values, care has to be taken over the choice of the initial value

x. -0
of . If too small a value of ¢ is chosen then initial values of the standardized residuals — l

will be large. If the redescending y functions are used, i.e. Hampel’s piecewise linear function,
Andrew’s sine wave, or Tukey’s bi-weight, then these large values of the standardised residuals
are Winsorized as zero. If a sufficient number of the residuals fall into this category then a false
solution may be returned, see Hampel [1] page 152.

9. Example
The following program reads in a set of data consisting of eleven observations of a variable X.

For this example, Hampels’s Piecewise Linear Function is used (IPSI = 2), values for h,, h,
and h, along with d for the y function, being read from the data file.

Using the following starting values various estimates of € and o are calculated and printed along
with the number of iterations used:

(a) GO7DBF determines the starting values, ¢ is estimated simultaneously.
(b) The user supplies the starting values, o is estimated simultaneously.
(c) GO7DBF determines the starting values, ¢ is fixed.

(d) The user supplies the starting values, o is fixed.
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9.1. Program Text

Note: the listing of the cxample program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7DBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=25)
* .. Local Scalars ..
real C, DCHI, H1, H2, H3, SIGMA, SIGSAV, THESAV,
+ THETA, TOL
INTEGER I, IFAIL, IPSI, ISIGMA, MAXIT, N, NIT
* .. Local Arrays ..
real RS(NMAX), WRK(NMAX), X(NMAX)
* .. External Subroutines ..
EXTERNAL GO7DBF
* .. Executable Statements ..
WRITE (NOUT,*) ’'GO7DBF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
WRITE (NOUT, *)
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),I=1,N)
READ (NIN,=*) IPSI, H1l, H2, H3, DCHI, MAXIT
WRITE (NOUT, *)
’ Input parameters Output parameters’
WRITE (NOUT,*) ’'ISIGMA SIGMA THETA TOL SIGMA THETA’
20 READ (NIN, *,END=40) ISIGMA, SIGMA, THETA, TOL
SIGSAV = SIGMA
THESAV = THETA
IFAIL = 0

CALL GO7DBF(ISIGMA,N,X,IPSI,C,H1,H2,H3,DCHI, THETA, SIGMA, MAXIT,
+ TOL, RS, NIT, WRK, IFAIL)

WRITE (NOUT,99999) ISIGMA, SIGSAV, THESAV, TOL, SIGMA, THETA
GO TO 20
ELSE
WRITE (NOUT,99998) 'N is out of range: N =', N
END IF
40 STOP

*
99999 FORMAT (1X,I3,3X,2F8.4,F7.4,F9.4,F8.4,1I4)
99998 FORMAT (1X,A,1I5)

END

9.2. Program Data
GO7DBF Example Program Data

11 : NUMBER OF OBSERVATIONS
13.0 11.0 16.0 5.0 3.0 18.0 9.0 8.0 6.0 27.0 7.0 : OBSERVATIONS
2 1.5 3.0 4.5 1.5 50 :IPSI H1 H2 H3 DCHI MAXIT
1 -1.0 0.0 0.0001 :ISIGMA SIGMA THETA TOL
1 7.0 2.0 0.0001
0 -1.0 0.0 0.0001
0 7.0 2.0 0.0001

Page 6 [NP1692/14]



GO7 — Univariate Estimation GO7DBF

9.3. Program Results
GO7DBF Example Program Results

Input parameters Output parameters
ISIGMA SIGMA THETA TOL SIGMA THETA
1 -1.0000 0.0000 0.0001 6.3247 10.5487
1 7.0000 2.0000 0.0001 6.3249 10.5487
0 -1.0000 0.0000 0.0001 5.9304 10.4896
0 7.0000 2.0000 0.0001 7.0000 10.6500
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GO7DCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

GO7DCF computes a M-estimate of location with (optional) simultaneous estimation of scale,
where the user provides the weight functions.

Specification
SUBROUTINE GO7DCF (CHI, PSI, ISIGMA, N, X, BETA, THETA, SIGMA,
1 MAXIT, TOL, RS, NIT, WRK, IFAIL)
INTEGER ISIGMA, N, MAXIT, NIT, IFAIL
real X(N), BETA, THETA, SIGMA, TOL, RS(N),
1 WRK (N)
EXTERNAL CHI, PSI
Description

The data consists of a sample of size n, denoted by x, ,x,,...,x,, drawn from a random variable X.
The x; are assumed to be independent with an unknown distribution function of the form,
F((x;—6)/0)

where @is a location parameter, and o is a scale parameter. M-estimators of @ and o are given by
the solution to the following system of equations;

S w((x,~0)/6) = 0

i=1

ﬁ;l((x.-"é)/a') - (-1)B

where ¥ and y are user-supplied weight functions, and S is a constant. Optionally the second
equation can be omitted and the first equation is solved for 6 using an assigned value of 0 = ©..

The constant f should be chosen so that & is an unbiased estimator when x;, for i = 1,2,...n has
a normal distribution. To achieve this the value of B is calculated as:

_ I N -z
B=EQ = J‘_“X(Z)‘EF CXP{ > }dz

A

X
The values of V( 'A

)6 are known as the Winsorized residuals.

The equations are solved by a simple iterative procedure, suggested by Huber:

5 = " x;— 9 52
* ﬂ(”—l) .-1 G )

and

A x,—6

6, = 91:—1 + - Z T)ak
or

6, = O,
if ois fixed.
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The initial values for 6 and & may be user-supplied or calculated within GO7DBF as the sample
median and an estimate of o based on the median absolute deviation respectively.

GO7DCEF is based upon subroutine LYHALG within the ROBETH library, see Marazzi [3].

4. References

[1] HAMPEL, F.R., RONCHETTI, E.M., ROUSSEEUW, P.J. and STAHEL, W.A.
Robust Statistics. The Approach Based on Influence Functions.
Wiley 1986.
[21 HUBER, PJ.
Robust Statistics.
Wiley 1981.
[3]1 MARAZZI A.
Subroutines for Robust Estimation of Location and Scale in ROBETH.

Institut Universitaire de Médecine Sociale et Préventive, Lausanne, 1987.
(Cah Rech Doc ITUMSP, No 3 ROB 1).

5. Parameters
1:  CHI - real FUNCTION, supplied by the user. External Procedure

CHI must return the value of the weight function y for a given value of its argument. The
value of y must be non-negative.

Its specification is:

real FUNCTION CHI(T)
real T

1: T -—real Input
On entry: the argument for which CHI must be evaluated.

CHI must be declared as EXTERNAL in the (sub)program from which GO7DCEF is called.
Parameters denoted as /nput must not be changed by this procedure.

2:  PSI - real FUNCTION, supplied by the user. External Procedure
PSI must return the value of the weight function y for a given value of its argument.
Its specification is:

real FUNCTION PSI(T)
real T

I T -real Input
On entry: the argument for which PSI must be evaluated.

PSI must be declared as EXTERNAL in the (sub)program from which GO7DCEF is called.
Parameters denoted as /nput must not be changed by this procedure.

W

ISIGMA - INTEGER. Input

Onentry: the value assigned to ISIGMA determines whether & is to be simultaneously
estimated.

ISIGMA = 0

The estimation of & is bypassed and SIGMA is set equal to o;
ISIGMA =1

G is estimated simultaneously.
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10:

11:

12:

N — INTEGER. Input
On entry: the number of observations, n.
Constraint: N > 1.

X(N) — real array. ; Input
On entry: the vector of observations, x,,X,,...,x

BETA - real. Input
On entry: the value of the constant f of the chosen CHI function.
Constraint. BETA > 0.0.

THETA - real. Input/ Output

Onentry: if SIGMA > 0, then THETA must be set to the required starting value of the
estimate of the location parameter 6. A reasonable initial value for & will often be the
sample mean or median.

On exit. the M-estimate of the location parameter 6.

SIGMA - real. Input/ Output
The role of SIGMA depends on the value assigned to ISIGMA (see above) as follows:

ISIGMA =1
Onentry: SIGMA must be assigned a value which determines the values of the starting
points for the calculation of 6 and &. If SIGMA < 0.0, then GO7DCF will determine
the starting points of 6 and &. Otherwise, the value assigned to SIGMA will be taken
as the starting point for &, and THETA must be assigned a relevant value before entry,
see above.

ISIGMA = 0
On entry: SIGMA must be assigned a value which determines the values of o, which

is held fixed during the iterations, and the starting value for the calculation of b. It
SIGMA < 0, then GO7DCF will determine the value of o, as the median absolute

deviation adjusted to reduce bias (see GO7DAF) and the starting point for 6.
Otherwise, the value assigned to SIGMA will be taken as the value of o, and THETA
must be assigned a relevant value before entry, see above.

On exit: the M-estimate of the scale parameter &, if ISIGMA was assigned the value 1
on entry, otherwise SIGMA will contain the initial fixed value o,.

MAXIT - INTEGER. Input
On entry: the maximum number of iterations that should be used during the estimation.
Suggested value: MAXIT = 50.

Constraint: MAXIT > 0.

TOL - real. Input

On entry: the relative precision for the final estimates. Convergence is assumed when the
increments for THETA, and SIGMA are less than TOLxmax(1.0,5,_,).

Constraint. TOL > 0.0.

RS(N) - real array. Output
On exit: the Winsorized residuals.

NIT — INTEGER. Output
On exit: the number of iterations that were used during the estimation.
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13:

14:

7.

WRK(N) — real array. Output
On exit: if SIGMA < 0.0 on entry, WRK will contain the n observations in ascending order.

IFAIL — INTEGER. Input/ Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1

On entry, N < 1,

or MAXIT < 0,

or TOL < 0.0,

or ISIGMA # Oor 1.
IFAIL = 2

On entry, BETA < 0.0.

IFAIL = 3
On entry, all elements of the input array X are equal.

IFAIL = 4

SIGMA, the current estimate of o, is zero or negative. This error exit is very unlikely,
although it may be caused by too large an initial value of SIGMA.

IFAIL = 5
The number of iterations required exceeds MAXIT.

IFAIL = 6

On completion of the iterations, the Winsorized residuals were all zero. This may occur
when using the ISIGMA = 0 option with a redescending y function, i.e. ¥ = 0if |¢| > 7,
for some positive constant 7.

A

x; — 6

If the given value of o is too small, then the standardized residuals , will be large

and all the residuals may fall into the region for which w(¢) = 0. This may incorrectly
terminate the iterations thus making THETA and SIGMA invalid.

Re-enter the routine with a larger value of o, or with ISIGMA = 1.

IFAIL = 7
The value returned by the CHI function is negative.

Accuracy
On successful exit the accuracy of the results is related to the value of TOL, see Section 5.
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8. Further Comments
Standard forms of the functions y and y are given in Hampel et al. [1], Huber [2], and
Marazzi [3]. GO7DBF calculates M-estimates using some standard forms for y and %.
When the user supplies the initial values, care has to be taken over the choice of the initial value

X,
of o. If too small a value is chosen then initial values of the standardized residuals ~—'——?;——'5 will

be large. If the redescending y functions are used, i.e. ¥ = 0 if |t] > 7, for some positive
constant 7, then these large values are Winsorized as zero. If a sufficient number of the residuals
fall into this category then a false solution may be returned, see Hampel er al. [1] page 152.

9. Example
The following program reads in a set of data consisting of eleven observations of a variable X.
The PSI and CHI functions used are Hampel’s Piecewise Linear Function and Hubers CHI
function respectively.
Using the following starting values various estimates of 8 and o are calculated and printed along
with the number of iterations used:

(a) GO7DCF determined the starting values, o is estimated simultaneously.
(b) The user supplies the starting values, o is estimated simultaneously.
(¢) GO7DCF determined the starting values, o is fixed.

(d) The user supplies the starting values, o is fixed.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7DCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=25)
* .. Local Scalars ..
real BETA, SIGMA, SIGSAV, THESAV, THETA, TOL
INTEGER I, IFAIL, ISIGMA, MAXIT, N, NIT
* .. Local Arrays ..
real RS(NMAX), WRK(NMAX), X(NMAX)
* .. External Functions ..
real CHI, PSI
EXTERNAL CHI, PSI
* .. External Subroutines ..
EXTERNAL GO7DCF
* .. Executable Statements
WRITE (NOUT,*) ’'GO7DCF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
WRITE (NOUT, *)
IF (N.LE.NMAX) THEN
READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) BETA, MAXIT
WRITE (NOUT, *)
’ Input parameters Output parameters’
WRITE (NOUT,*) ’'ISIGMA SIGMA THETA TOL SIGMA THETA'
20 READ (NIN, *, END=40) ISIGMA, SIGMA, THETA, TOL
SIGSAV = SIGMA
THESAV = THETA
IFAIL = 0
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CALL GO7DCF(CHI,PSI,ISIGMA,N,X,BETA, THETA, SIGMA,MAXIT, TOL, RS,

+ NIT,WRK, IFAIL)
*

WRITE (NOUT,99999) ISIGMA, SIGSAV, THESAV, TOL,
GO TO 20

ELSE
WRITE (NOUT,99998) ’'N is out of range: N =', N

END IF

40 STOP

99999 FORMAT (1X,I3,3X,2F8.4,F7.4,1X%,2F8.4)
99998 FORMAT (1X,A,I5)

END
*
real FUNCTION PSI(T)
* Hampel’s Piecewise Linear Function.
* .. Parameters ..
real ZERO
PARAMETER (ZERO=0.0e+0)
real H1, H2, H3
PARAMETER (H1=1.5e0, H2=3.0e0, H3=4.5¢€0)
* .. Scalar Arguments ..
real T
* .. Local Scalars ..
real ABST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Executable Statements ..

ABST = ABS(T)
IF (ABST.LT.H3) THEN
IF (ABST.LE.H2) THEN
PSI = MIN(H1,ABST)
ELSE
PSI = H1*(H3-ABST)/(H3-H2)
END IF
IF (T.LT.ZERO) PSI = -PSI
ELSE
PSI = ZERO
END IF
RETURN
END

real FUNCTION CHI(T)
* Huber’s CHI function.
* .. Parameters .
real DCHI
PARAMETER (DCHI=1.5€0)
* .. Scalar Arguments ..
real T
* .. Local Scalars ..
real ABST, PS
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Executable Statements ..
ABST = ABS(T)
PS = MIN(DCHI,ABST)
CHI = PS*PS/2
RETURN
END

Program Data
GO7DCF Example Program Data

11 : N, NUMBER OF OBSERVATIONS
13.0 11.0 16.0 5.0 3.0 18.0 9.0 8.0 6.0 27.0 7.0 : X, OBSERVATIONS

0.3892326 50 ¢ BETA MAXIT
1 -1.0 0.0 0.0001 : ISIGMA SIGMA THETA
1 7.0 2.0 0.0001
0 -1.0 0.0 0.0001
0 7.0 2.0 0.0001

TOL

SIGMA, THETA
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9.3. Program Results
GO7DCF Example Program Results

Input parameters Output parameters
ISIGMA SIGMA THETA TOL SIGMA THETA
1 -1.0000 0.0000 0.0001 6.3247 10.5487
1 7.0000 2.0000 0.0001 6.3249 10.5487
0 -1.0000 0.0000 0.0001 5.9304 10.4896
0 7.0000 2.0000 0.0001 7.0000 10.6500
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GO7DDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

GO7DDF calculates the trimmed and Winsorized means of a sample and estimates of the
variances of the two means.

Specification
SUBROUTINE GO7DDF (N, X, ALPHA, TMEAN, WMEAN, TVAR, WVAR, K,
1 SX, IFAIL)
INTEGER N, K, IFAIL
real X(N), ALPHA, TMEAN, WMEAN, TVAR, WVAR, SX(N)
Description

GO7DDF calculates the o-trimmed mean and a-Winsorized mean for a given ¢, as described
below.

Let x;, for i = 1,2,...,n represent the n sample observations sorted into ascending order. Let
k = [an] where [y] represents the integer part of y.

Then the trimmed mean is defined as;

- 1 nk
o= n—-2k i-kE-Q-lxi’
and the winsorized mean is defined as;
_ 1 n-k
X, == 2 x4 (kxyy) + (kx,,).
i=k+1

GO7DDF then calculates the Winsorized variance about the trimmed and Winsorized means
respectively and divides by n to obtain estimates of the variances of the above two means.

Thus we have;

n-k
Estimate of var(Z,) = = 3 (x;=%,)2 + k(teey—%,)? + k(tpa—%,)
N i=k+l
and
n—k
Estimate of var(,) = — 3 (x;-%,)? + k(Xpy1=%,)? + k(x, ).
N~ =kl
References

[1] HUBER, P.J.
Robust Statistics.
Wiley, New York, 1981.

[2] HAMPEL, F.R., RONCHETTI, E.M., ROUSSEEUW, P.J., STAHEL, W.A.
Robust Statistics, The approach based on Influence Functions.
Wiley, New York, 1986.

Parameters

N — INTEGER. Input
On entry: the number of observations, n.
Constraint: N 2 2.
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X(N) — real array. Input
On entry: the sample observations, x;, for i = 1,2,...,n.

ALPHA - real. Input
On entry: the proportion of observations to be trimmed at each end of the sorted sample, a.
Constraint: 0.0 < ALPHA < 0.5.

TMEAN - real. Output
On exit: the o-trimmed mean, X,.

WMEAN - real. Output
On exit: the a-Winsorized mean, x,,.

TVAR - real. Output
On exit: contains an estimate of the variance of the trimmed mean.

WVAR - real. Output
On exit: contains an estimate of the variance of the Winsorized mean.

K — INTEGER. Output
On exit: contains the number of observations trimmed at each end, k.

SX(N) — real array. Output
On exit: contains the sample observations sorted into ascending order.

IFAIL — INTEGER. Input/ Qutput

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL =1
On entry, N < 1.
IFAIL = 2
On entry, ALPHA < 0.0,
or ALPHA 2 0.5.
Accuracy

The results should be accurate to within a small multiple of machine precision.

Further Comments
The time taken by the routine is proportional to n.

Example

The following program finds the o-trimmed mean and o-Winsorized mean for a sample of 16
observations where ¢ = 0.15. The estimates of the variances of the above two means are also
calculated.
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

*

99999
99998

GO7DDF Example Program Text
Mark 14 Release. NAG Copyright 1989.

.. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX

PARAMETER (NMAX=1000)

.. Local Scalars ..

real ALPHA, PROPN, TMEAN, TVAR, WMEAN, WVAR
INTEGER I, IFAIL, K, N
.. Local Arrays ..

real SX(NMAX), X(NMAX)
.. External Subroutines ..
EXTERNAL GO7DDF

.. Intrinsic Functions ..
INTRINSIC real

.. Executable Statements ..

WRITE (NOUT,*) ’‘GO7DDF Example Program Results’
Skip heading in data file

READ (NIN, *)

READ (NIN,*) N, (X(I),I=1,N), ALPHA

IFAIL = 0

CALL GO7DDF(N,X,ALPHA, TMEAN, WMEAN, TVAR,WVAR, K, SX, IFAIL)

PROPN = real(K)/N

PROPN = 100.0e0 — 200.0e0*PROPN

WRITE (NOUT, *)

WRITE (NOUT,99999) ’Statistics from middle ’, PROPN, '$ of data’
WRITE (NOUT, *)

WRITE (NOUT,99998) ' Trimmed-mean = ’/, TMEAN
WRITE (NOUT,99998) ' Variance of Trimmed-mean = ’, TVAR
WRITE (NOUT, *)

WRITE (NOUT,99998) ' Winsorized-mean = ', WMEAN

WRITE (NOUT, 99998) ‘Variance of Winsorized-mean = ’, WVAR
STOP

FORMAT (1X,A,F6.2,A)
FORMAT (1X,A,Fl11.4)
END

9.2. Program Data
GO7DDF Example Program Data

16
26.0
0.15

12.0 9.0 2.0 5.0 6.0 8.0 14.0 7.0 3.0 1.0 11.0 10.0 4.0 17.0 21.0

9.3. Program Results
GO7DDF Example Program Results

Statistics from middle 75.00% of data

Trimmed-mean = 8.8333

Variance of Trimmed-mean = 1.5434
Winsorized-mean = 9.1250

Variance of Winsorized-mean = 1.5381
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GO7EAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7EAF computes a rank based (nonparametric) estimate and confidence interval for the
location parameter of a single population.

2. Specification
SUBROUTINE GO7EAF (METHOD, N, X, CLEVEL, THETA, THETAL, THETAU, ESTCL,

1 WLOWER, WUPPER, WRK, IWRK, IFAIL)

INTEGER N, IWRK(3*N), IFAIL

real X(N), CLEVEL, THETA, THETAL, THETAU, ESTCL, WLOWER,
1 WUPPER, WRK(4*N)

CHARACTER~*1 METHOD

3. Description

Consider a vector of independent observations, X = (x,,X,,...X,) Wwith unknown common
symmetric density f(x;—6). GOTEAF computes the Hodges-Lehmann location estimator (see
Lehmann [1]) of the centre of symmetry 6, together with an associated confidence interval. The
Hodges-Lehmann estimate is defined as

A x,‘ + x'
6 = median{——zwi, 1<i<j< n}.
X, + X;

Let m = n("2+ D and let a,, for k = 1,2,...,m denote the m ordered averages - > L for
1 <£i<j< n Then

if m is odd, 8 = a, where k = (m;l),

A a + a
if m is even, § = ~-——*"! where k = %

This estimator arises from inverting the one-sample Wilcoxon signed-rank test statistic,
W(x~86,), for testing the hypothesis that 6 = 6,. Effectively W(x—6,) is a monotonically
decreasing step function of 6, with

mean(W) = u = ”(nzl),
var(W) = o = zt_(gil_;fn_ﬂ_)

The estimate @ is the solution to the equation W(x—é) = u; two methods are available for
solving this equation. These methods avoid the computation of all the ordered averages a,; this
is because for large n both the storage requirements and the computation time would be
excessive.

The first is an exact method based on a set partitioning procedure on the set of all ordered
averages (x,+x;)/2 for i < j. This is based on the algorithm proposed by Monahan [4].

The second is an iterative algorithm, based on the Illinois method which is a modification of the
regula falsi method, see McKean and Ryan [3]. This algorithm has proved suitable for the
function W(x—6,) which is asymptotically linear as a function of 6.

The confidence interval limits are also based on the inversion of the Wilcoxon test statistic.

Given a desired percentage for the confidence interval, 1—¢, expressed as a proportion between
0 and 1, initial estimates for the lower and upper confidence limits of the Wilcoxon statistic are
found from
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W, =u-05+ (6cd'(a/2)) and
W, =p+05+ (60 (1-0/2)),
where @' is the inverse cumulative Normal distribution function.
W, and W, are rounded to the nearest integer values. These estimates are then refined using an
exact method if n < 80, and a Normal approximation otherwise, to find W, and W, satisfying
P(W<sW)< a2
PW<sW +1)> a2

and
P(W2W,) < o2
PW2W, -1) > a/2.
Let W, = m — k; then 6, = a,,,. This is the largest value 6, such that W(x-6,) = W,.
Let W, = k; then 6, = a,,_,. This is the smallest value 6, such that W(x—6,) = W,.
As in the case of 6, these equations may be solved using either the exact and iterative methods
to find the values 6, and 6,.
Then (6,,6,) is the confidence interval for 6. The confidence interval is thus defined by those

values of 6, such that the null hypothesis, @ = 6,, is not rejected by the Wilcoxon signed-rank
test at the (100xc)% level.

4. References

[1] LEHMANN, E.L.
Nonparametrics. Statistical Methods Based on Ranks.
McGraw-Hill, New York, 1975.
[2] MARAZZI, A.
Subroutines for robust estimation of location and scale in ROBETH, ROBETH-85
Document No. 1, Aug. 1985.
Institut Universitaire de Medecine Sociale et Préventive, Lausanne, 1985.

[3] MCcKEAN, J.W. and RYAN, T.A.
Algorithm 516: An algorithm for obtaining confidence intervals and point estimates based
on ranks in the two-sample location problem.
ACM Trans. Math. Softw., 3, pp. 183-185, 1977.

[4] MONAHAN, J.F.
Algorithm 616: Fast computation of the Hodges-Lehmann location estimator.
ACM Trans. Math. Softw., 10, pp. 265-270, 1984.

5. Parameters
1:  METHOD — CHARACTER*1. Input
On entry: specifies the method to be used;

if METHOD = 'E' the exact algorithm is used,
if METHOD = ‘A’ the iterative algorithm is used.

Constraint: METHOD = E' or ‘A'.

2: N - INTEGER. Input
On entry: the sample size, n.
Constraint: N 2 2.

3:  X(N) - real array. Input
On entry. the sample observations, x; for i = 1,2,...,n.
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4:

10:

11:

12:

13:

CLEVEL - real. Input
On entry: the confidence interval desired.
e.g. for a 95% confidence interval set CLEVEL = 0.95.
Constraint: 0.0 < CLEVEL < 1.0.

THETA - real. Output

On exit: the estimate of the location, 6.

THETAL - real. Ouwtput
On exit: the estimate of the lower limit of the confidence interval, 6,.

THETAU - real. Output
On exit: the estimate of the upper limit of the confidence interval, 6,.

ESTCL - real. Output

Onexit: an estimate of the actual percentage confidence of the interval found, as a
proportion between (0.0,1.0).

WLOWER - real. Output

On exit: the upper value of the Wilcoxon test statistic, W,, corresponding to the lower limit
of the confidence interval.

WUPPER - real. Output

On exit: the lower value of the Wilcoxon test statistic, W,, corresponding to the upper limit
of the confidence interval.

WRK (4*%N) — real array. Workspace
IWRK (3*N) — INTEGER array. Workspace
IFAIL — INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

On exit: IFAIL = O unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).

IFAIL = 1
On entry, METHOD # 'E' or A/,
or N < 2,
or CLEVEL < 0.0,
or CLEVEL 2 1.0.
IFAIL = 2

There is not enough information to compute a confidence interval since the whole sample
consists of identical values.
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IFAIL = 3

For at least one of the estimates 6, 6, and 6,, the underlying iterative algorithm (when
METHOD = ‘A") failed to converge. This is an unlikely exit but the estimate should still be
a reasonable approximation.

Accuracy

The routine should produce results accurate to 5 significant figures in the width of the confidence
interval; that is the error for any one of the three estimates should be less than
0.00001x( THETAU-THETAL).

Further Comments
The time taken increases with the sample size n.

Example

The following program calculates a 95% confidence interval for 6, a measure of symmetry of the
sample of 50 observations.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7EAF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=100)
* .. Local Scalars ..
real CLEVEL, ESTCL, THETA, THETAL, THETAU, WLOWER,
+ WUPPER
INTEGER I, IFAIL, N
* .. Local Arrays ..
real WRK(4*NMAX), X(NMAX)
INTEGER IWRK(3*NMAX)
* .. External Subroutines ..
EXTERNAL GO7EAF
* .. Executable Statements ..
WRITE (NOUT,*) ’GO7EAF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.LE.1 .OR. N.GT.NMAX) THEN
WRITE (NOUT,99999) N

ELSE
READ (NIN,*) (X(I),I=1,N)
READ (NIN,*) CLEVEL
IFAIL = 0

CALL GO7EAF(’Exact’,N,X,CLEVEL, THETA, THETAL, THETAU, ESTCL,
+ WLOWER, WUPPER, WRK, IWRK, IFAIL)

WRITE (NOUT, *)
WRITE (NOUT,*) ’ Location estimator Confidence Interval '
WRITE (NOUT, *)
WRITE (NOUT,99998) THETA, ’( ’, THETAL, ' , ', THETAU, ' )’
WRITE (NOUT, *)
WRITE (NOUT,*) ’ Corresponding Wilcoxon statistics’
WRITE (NOUT, *)
WRITE (NOUT,99997) ’ Lower : ’, WLOWER
WRITE (NOUT,99997) ’ Upper : ’, WUPPER
END IF
STOP
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*

99999 FORMAT (1X,’N is less than 2 or greater than NMAX :

99998 FORMAT (3X,F10.4,12X,A,F6.4,A,F6.4,3)
99997 FORMAT (A,F8.2)

END

9.2. Program Data
GO7EAF Example

40

-0.23 0.35
0.73 0.74

-0.31 0.24
0.63 -0.22
0.95

9.3. Program Results

Program Data

-0.77 0.35

0.83 -0.87
-0.47 -0.68
-0.07 -0.43

0.27
0.21
-0.77
-0.21

GO7EAF Example Program Results

Location estimator

-0.1300

Corresponding Wilcoxon statistics

( —.3300 ,

Confidence

-0.72

0.29
-0.86
-0.31

Interval

0.0350 )

0.08
-0.91
-0.59

0.64

-0.40
-0.04

0.73
-1.00

GO7EAF

N = ’,I8)

-0.76 0.45
0.82 -0.38
0.39 -0.44

-0.86 -0.73

Lower : 556.00
Upper : 264.00
[NP2478/16]
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GO7EBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

GO7EBF calculates a rank based (nonparametric) estimate and confidence interval for the
difference in location between two independent populations.

2. Specification
SUBROUTINE GO7EBF (METHOD, N, X, M, Y, CLEVEL, THETA, THETAL, THETAU,

1 ESTCL, ULOWER, UUPPER, WRK, IWRK, IFAIL)
INTEGER N, M, IWRK(3*N), IFAIL

real X(N), Y(M), CLEVEL, THETA, THETAL, THETAU, ESTCL,
1 ULOWER, UUPPER, WRK(3* (M+N))

CHARACTER*1 METHOD

3. Description

Consider two random samples from two populations which have the same continuous distribution
except for a shift in the location. Let the random sample, x = (x,,X,,....x,)”, have distribution
F(x) and the random sample, y = (y,,¥,,....Y,,) ", have distribution F(x—6).

A

GO7EBF finds a point estimate, 6, of the difference in location € together with an associated
confidence interval. The estimates are based on the ordered differences y;, — x;. The estimate 6
is defined by

6= median{y; — x;, i = 1,2,..,n;j = 1,2,...m}.

Let d, for k = 1,2,.,nm denote the nm (ascendingly) ordered differences y; — x; for
i=12..,nj=12,..m Then

if nm is odd, & = d, where k = "”;_'l,
, d, +d
if nm is even, 0 = X B Ghere k = nm

2

This estimator arises from inverting the two sample Mann-Whitney rank test statistic, U(,), for
testing the hypothesis that @ = 6,. Thus U(6,) is the value of the Mann-Whitney U statistic for
the two independent samples {(x; + 6,), i = 1,2..,n} and {y,, j = 1,2..,m}. Effectively
U(86,) is a monotonically increasing step function of 6, with

mean(U) = y = %"
var(U) = & = ’l"’(+"2'”ﬂ

The estimate 8 is the solution to the equation U/( 0) = H; two methods are available for solving
this equation. These methods avoid the computation of all the ordered differences d,; this is
because for large n and m both the storage requirements and the computation time would be high.

The first is an exact method based on a set partitioning procedure on the set of all differences
y; = x;fori = 1,2,.,n;j = 1,2,...,m. This is adapted from the algorithm proposed by Monahan
[3] for the computation of the Hodges-Lehmann estimator for a single population.

The second is an iterative algorithm, based on the Illinois method which is a modification of the
regula falsi method, see McKean and Ryan [2]. This algorithm has proved suitable for the
function U(6,) which is asymptotically linear as a function of 6,.

The confidence interval limits are also based on the inversion of the Mann-Whitney test statistic.
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Given a desired percentage for the confidence interval, 1—-ca, expressed as a proportion between
0.0 and 1.0 initial estimates of the upper and lower confidence limits for the Mann-Whitney U
statistic are found;

U =u-05+ (06x &' (a2))

U, =u+05+ (0cx &' ((1-a)/2))
where @' is the inverse cumulative Normal distribution function.
U, and U, are rounded to the nearest integer values. These estimates are refined using an exact
method, without taking ties into account, if n+m < 40 and max(n,m) < 30 and a Normal
approximation otherwise, to find U, and U, satisfying

P(U<SU) £ o2

PUSU +1) > a2
and

PU=2U, < o2

PU2U, -1) > o2
The function U(8,) is a monotonically increasing step function. It is the number of times a score

in the second sample, y;, precedes a score in the first sample, x;+6, where we only count a half
if a score in the second sample actually equals a score in the first.

Let U, = k; then 6, = d,,,. This is the largest value 8, such that U(6,) = U,.
Let U, = nm — k; then 6, = d,,_,. This is the smallest value 6, such that U(8,) = U,.

As in the case of 8, these equations may be solved using either the exact or iterative methods to
find the values 6, and 6,.

Then (6,,8,) is the confidence interval for 6. The confidence interval is thus defined by those
values of 6, such that the null hypothesis, & = 6,, is not rejected by the Mann-Whitney two
sample rank test at the (100x)% level.

References

[1] LEHMANN, E.L.
Nonparametrics. Statistical Methods Based on Ranks.
McGraw-Hill, New York, 1975.

[2] McKEAN, J.W. and RYAN, T.A.
Algorithm 516: An algorithm for obtaining confidence intervals and point estimates based
on ranks in the two-sample location problem.
ACM Trans. Math. Softw., 3, pp. 183-185, 1977.

[3] MONAHAN, JF.
Algorithm 616: Fast computation of the Hodges-Lehmann location estimator.
ACM Trans. Math. Softw., 10, pp. 265-270, 1984.

Parameters
METHOD — CHARACTER*1. Input
On entry: specifies the method to be used;

if METHOD = 'E' the exact algorithm is used,
if METHOD = ‘A’ the iterative algorithm is used.

Constraint: METHOD = 'E' or ‘A'.

N — INTEGER. Input
On entry: the size of the first sample, n.
Constraint: N 2 1.
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3:

10:

11:

12:

13:

14:

15:

X(N) — real array. Input
On entry: the observations of the first sample, x; for i = 1,2,...,n.

M - INTEGER. Input
On entry: the size of the second sample, m.
Constraint: M 2 1.

Y (M) - real array. Input
On entry: the observations of the second sample, y; for j = 1,2,...,m.

CLEVEL - real. Input

Onentry: the confidence interval required, 1-¢; e.g. for a 95% confidence interval set
CLEVEL = 0.95.

Constraint. 0.0 < CLEVEL < 1.0.

THETA - real. Output
On exit: the estimate of the difference in the location of the two populations, b.

THETAL - real. Output
On exit: the estimate of the lower limit of the confidence interval, 6,.

THETAU - real. Output
On exit: the estimate of the upper limit of the confidence interval, 6,.

ESTCL - real. Output

Onexit: an estimate of the actual percentage confidence of the interval found, as a
proportion between (0.0,1.0).

ULOWER - real. Ouwtput
On exit: the value of the Mann-Whitney U statistic corresponding to the lower confidence
limit, U,.

UUPPER - real. Output
On exit: the value of the Mann-Whitney U statistic corresponding to the upper confidence
limit, U,.

WRK (3*(M+N)) — real array. Workspace

IWRK (3*N) — INTEGER array. Workspace

IFAIL - INTEGER. Input/ Output

Onentry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter
(described in Chapter PO1) the recommended value is 0.

Onexit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
Errors detected by the routine:

If on entry IFAIL = O or -1, explanatory error messages are output on the current error message
unit (as defined by X04AAF).
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IFAIL = 1
On entry, METHOD # 'E' or ‘A',
or N <1,
or M< 1,
or CLEVEL < 0.0,
or CLEVEL 2 1.0.
IFAIL = 2

Each sample consists of identical values. All estimates are set to the common difference
between the samples.

IFAIL = 3

For at least one of the estimates 6, 6, and 6,, the underlying iterative algorithm (when
METHOD = 'A') failed to converge. This is an unlikely exit but the estimate should still be
a reasonable approximation.

Accuracy

The routine should return results accurate to 5 significant figures in the width of the confidence
interval, that is the error for any one of the three estimates should be less than
0.00001x(THETAU-THETAL).

Further Comments
The time taken increases with the sample sizes n and m.

Example

The following program calculates a 95% confidence interval for the difference in location
between the two populations from which the two samples of sizes 50 and 100 are drawn
respectively.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* GO7EBF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, MMAX
PARAMETER (NMAX=100,MMAX=100)
* .. Local Scalars ..
real CLEVEL, ESTCL, THETA, THETAL, THETAU, ULOWER,
+ UUPPER
INTEGER I, IFAIL, M, N
* .. Local Arrays ..
real WRK(3* (NMAX+MMAX) ), X(NMAX), Y(MMAX)
INTEGER IWRK(3*NMAX)
* .. External Subroutines
EXTERNAL GO7EBF
* .. Executable Statements ..
WRITE (NOUT,*) 'GO7EBF Example Program Results’
* Skip Heading in data file

READ (NIN, *)

READ (NIN,*) N, M

IF (N.LE.1 .OR. N.GT.NMAX .OR. M.LE.l1 .OR. M.GT.MMAX) THEN
WRITE (NOUT,99999) N, M
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ELSE

READ
READ
READ
READ
READ
READ
IFAIL

(NIN, *)

(NIN,*) (X(I),I=1,N)
(NIN, *)

(NIN,*) (Y(I),I=1,M)
(NIN, *)

(NIN,*) CLEVEL

= 0

GO7EBF

CALL GO7EBF(’Approx’,N,X,M,Y,CLEVEL, THETA, THETAL, THETAU, ESTCL,
ULOWER, UUPPER, WRK, IWRK, IFAIL)

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

END IF
STOP

*

99999 FORMAT (4X,’N or M is out of range
99998 FORMAT (3X,F10.4,12X,A,F6.4,A,F6.4,A)

(NOUT, *)

(NOUT, *) ’ Location estimator

(NOUT, *)
(NOUT, 99998) THETA,
(NOUT, *)

’( ', THETAL,

Confidence Interval '/

14

4
r ’

THETAU,

14 )l

(NOUT, *) ’ Corresponding Mann-Whitney U statistics’

(NOUT, *)

(NOUT, 99997) ’ Lower :
(NOUT, 99997) ’ Upper :

99997 FORMAT (A,F8.2)
END

9.2. Program Data
GO7EBF Example Program Data

', ULOWER
’, UUPPER

: N="',18,'

and M = ’118)

50 100

First sample of N observations

-0.582 0.157 -0.523 -0.769 2.338 1.664 -0.981 1.549 1.131 -0.460

-0.484 1.932 0.306 -0.602 -0.979 0.132 0.256 -0.094 1.065 -1.084

-0.969 -0.524 0.239 1.512 -0.782 -0.252 -1.163 1.376 1.674 0.831
1.478 -1.486 -0.808 -0.429 -2.002 0.482 -1.584 -0.105 0.429 0.568
0.944 2.558 -1.801 0.242 0.763 -0.461 -1.497 -1.353 0.301 1.941
Second sample of M observations
1.995 0.007 0.997 1.089 2.004 0.171 0.294 2.448 0.214 0.773
2.960 0.025 0.638 0.937 -0.568 -0.711 0.931 2.601 1.121 -0.251

-0.050 1.341 2.282 0.745 1.633 0.944 2.370 0.293 0.895 0.938
0.199 0.812 1.253 0.590 1.522 -0.685 1.259 0.571 1.579 0.568
0.381 0.829 0.277 0.656 2.497 1.779 1.922 -0.174 2.132 2.793
0.102 1.569 1.267 0.490 0.077 1.366 0.056 0.605 0.628 1.650
0.104 2.194 2.869 -0.171 -0.598 2.134 0.917 0.630 0.209 1.328
0.368 0.756 2.645 1.161 0.347 0.920 1.256 -0.052 1.474 0.510
1.386 3.550 1.392 -0.358 1.938 1.727 -0.372 0.911 0.499 0.066
1.467 1.898 1.145 0.501 2.230 0.212 0.536 1.690 1.086 0.494

Confidence Level

0.95

9.3. Program Results
GO7EBF Example Program Results
Location estimator Confidence Interval
0.9505 ( 0.5650 , 1.3050 )

Corresponding Mann-Whitney U statistics

Lower : 2007.00

Upper : 2993.00
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